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Path-integral methods are used to derive an exact expression for the space-time
propagator for systems with quadratic Hamiltonians. For a certain subclass of such
systems, the result is reduced to a simplified closed form. The propagators for several

illustrative elementary cases are exhibited in detail.

I. INTRODUCTION

It may be fairly widely known that it is possible to solve
the equations which describe the quantum behavior of phys-
ical systems with quadratic Hamiltonians. We were unable,
however, to find in the literature a solution of a general,
explicit, and detailed character. Upon setting out to use well-
known techniques to obtain such a solution we discovered,
moreover, that the task was not nearly so straightforward,
nor was the result so simple in its detail structure, as expect-
ed. We did succeed in this task by using path-integral meth-
ods. Since exact results such as the ones we obtained are
potentially broadly useful and since our results apparently
are not to be found elsewhere and are not readily derived, we
are presenting our results here along with a brief outline of
their derivation and some elementary applications to illus-
trate their use.

The quantum mechanical motion of many physical sys-
tems of interest may be derived from Hamiltonian operators
which are expressible in the Schrodinger picture, either ex-
actly or as a useful approximation, by the quadratic form

HGpt)=aup P+ bud;idi+ 3cu(hdn+ 41D

+d; (1)p;+ ¢, (1)g; + /(1) 1)

where §; is the operator for multiplication by the coordinate
g;associated with the j-th degree of freedom, presumed to be
a real variable ranging from — o to + o, and where

a

p.= —ih—. 2

B; 34, 2

Throughout this paper the summation convention is
employed with respect to the indicesj, /', k, and k , which are
used to index the degrees of freedom and which take on the
values 1, 2, 3,...,N. The coefficient matrices a, b, ¢, d, e, and f
occuring in Eq. (1) are taken to be real; a, b, and c are as-
sumed to be independent of time, ¢; a i1s assumed to be non-
singular; and, as a notational convenience, both a and b are
presumed to have been symmetrized.

In order to explicate the dynamical behavior generally
of all systems described by Eq. (1), it is the primary objective
of this paper to derive an exact explicit expression for the
space~time propagator, K (¢”,t ";q’,t "), which is defined by
the requirement that the system’s coordinate-space wave-
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function, ¥, evolve in time according to the integral
transformation

Wg"t") = fK (q",t"3q't gt ) AV, &)

where dV is the element of volune in coordinate (g) space.
The reason for focusing attention upon determination of K is
that once K is known, then for any given initial state of the
system, all predictions about the subsequent behavior of the
system may be expressed directly and explicitly in terms of K
and the given initial state.! The quadratic systems character-
ized by Eq. (1) were chosen for investigation because they
constitute a fairly broad class of systems for which the meth-
od of analysis here used provides a unified, exact explicit
description of their quantum behavior.

The resulting expression for X is potentially useful in
several respects: (1) It explicates some of the general features
common to the dynamical behavior of quadratic systems.
Such features may be sufficient in some applications to make
some specific predictions of interest, without the need for a
complete quantum treatment. An example of such a feature
is provided by the well-known fact that for quadratic sys-
tems the dependence of K (¢”,t ";q’,t ) upon the coordinates,
¢" and ¢’ is contained wholly within the factor
exp(i-S(q",t ";q',t ) /#), where S(¢",t ";q’,t ") is the classical
action function. (2) In some applications, the Hamiltonian
for the system may be adequately approximated by Eq. (1),
in which case the solution for K as expressed in detail here
may be employed without further approximations to obtain
predictions of interest in formats which are explicit and
practical for numerical computation. If such an approxima-
tion is not in itself entirely adequate, it still may serve as a
““zero-th” order approximation in a systematic perturbation
calculation in which results are obtained in successively
higher orders in the difference between the exact Hamilton-
ian and its quadratic approximation.’ To select a suitable
quadratic approximate Hamiltonian of the form of Eq. (1),
Feynman’s path-integral variational method may be help-
ful.' (3) A prospectively powerful use of the result for K
arises in connection with the problem of obtaining the propa-
gator for a system with many degrees of freedom such that
the Hamiltonian may be expressed in the form of Eq. (1) with
the ¢’s and p’s representing some (but not all) of the degrees
offreedom and with the time-dependent functions,d (¢),e(z ),
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and f(¢) representing functions of the motion of the remain-
ing degrees of freedom. In such a case the propagator for the
entire system may be expressed as a path integral over all of
the degrees of freedom and the integration over some of the
degrees of freedom then performed by application of the re-
sult obtained here for K. The outcome is an exact path-inte-
gral expression requiring path integration of only the re-
maining degrees of freedom. Exact reduction of the number
of degrees of freedom of a system can be a significiant step in
the exact or approximate analysis of the system. According
to the theory of interactions there are many instances of
widely used models of physical systems of great interest for
which a set of particles (or a field) interacts directly only
with some Bosonic field in such a way that when the Hamil-
tonian is expressed in terms of the Bosonic field oscillator
coordinates and momenta, the result is of the form for which
the reduction process just discussed is possible. Feynman’s
treatment of quantum electrodynamics provides examples of
such applications of a general character and his solution of
the polaron problem is a specific example carried to approxi-
mate numerical conclusion for the polaron self-energy ob-
tained with greater accuracy than had been obtained
previously.'?

Section II contains the derivation of the exact expres-
sion for the space-time propagator for all systems for which
the Hamiltonian is of the form of Eq. (1). For certain special
conditions, a simplified closed-form expression for the prop-
agator is also obtained in Sec. II. Some elementary illustra-
tive examples of common interest are displayed in Sec. III.
These examples include the general case and some special
cases of one-dimensional motion, and the three-dimensional
motion of a particle in a constant magnetic field. The present
work is summarized in Sec. IV and is compared with other
path-integral treatments of quadratic systems in Sec. V.

i1. DERIVATION OF THE PROPAGATOR
A. General case

According to Garrod,® the phase-space path-integral
expression for the propagator for systems described by Eq.

(1 is
K("t"q'0)

(q",t")
- f( D¥[q(t), p(0)]

q.,t")

xes| L [ p04f0) — H (@02p000)1d1 | @

o0 el N
= vlllr}'l [f ...f [ H dqj,l"'dqj,Mfl

=1

» apir dp/:M }exp[ %(Iglpj,l.(qj,l_qj,,_l)
[ m@oso0a)]). )
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where g(t ) is piecewise linear and p(t ) is piecewise constant
on a uniform partition (t,== t',t,,t2,...,t 4 _ 1,Ex=t ") of the
time interval ¢ '<t<t", where g;; = q{t;), p; = pf¢) for ¢, _,
<t<t,q =q(t'),andqg"” = q(t "), and where H (g,p,t ) is the
classical Hamiltonian function specified by Eq. (1). Integra-
tion of the momentum variables p;; , via a linear transforma-
tion which uncouples them, yields the following configura-
tion space path integral expression (with the correct
normalization constant properly explicated):

K(g"p"gt)= lim {J [a|QihT /M)Y] ™7

<[ M Tl dass |exo] 5 5@ ]} ©

=1 r=1
or equivalently
K@",t"q',t"y=-exp[iS{qg",t ";q',t")/A|F(T), @)

where S.(q”,t ";q’,t ") is the classical limit of the action
S = | Laodor ®)
.

associated with the Lagrangian .% given by
Z(q.4, )E[%ayj ! (dj(t) - qj)(dj'(t) - q])]

+ Q54,9 — 8949, — P, g = f (), 9

wherein
Q= —1la’c, (10)
g=>b—iéa'c, 1)
and
pt)=e(t)+Qd(t), (12)
and where
F(T)=lim Hw fw [QihT /MY |a|] M2

N M—1 ;o
<11 11 dqj‘,] exp[ —;—f L (z(),2(t))dt ”, 13)
j=11=1 v
wherein z(¢ ) denotes the deviation of g(¢) from its classical
limit and

(14)

N —_1 s .
f’(z,z):[%ajj, 22, — Q522 —8;2% 1,

with
a __ (Q - Q)

Q T
The tilde is used to denote transposition. In Egs. (6), (7), (13)
and hereafter T=1t" — t’. Also the square root of any com-
plex number, as in Eq. (6), is to be understood to represent
the root with an argument, 8, in the range — (7/2) <6
<(7/2).]

Inordertoevaluate F (T'), consider the system for which
L (g,g,t)reducesto L '(¢,§)andletq” = ¢'. For this case Eqgs.
(6) and (7), integrated over g, yield

F(T)=A(T)/B(T),

where

(15)

(16
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exp[iS ;(¢'.9')/#] H dgj amn

ji=1

B(T) = fjw fj

and

A(T)= lim [on fw |a| =72 exp[iS'(g(2))/#]

1|1 Vo ) v I
v . (18)
,.1;[1 [( zgl V @ikt /My } V Q@ikT /M)
(19

Let ¢ (n) be defined by the expansion
q] (t) — 2 §](n)ezim"(t — t'),

n=1

where w,=nn/T. Then,

SqO)= [ LN

[ S 2,00 m —g, Y| T 20)

n=1

where

Y=g/ — 2 (¢ Xn)/@,) 1)
and

N (w,)=a'—2Q%w, — g/ 22)

The notation £ R and £ 'is used to denote the real and imagi-
nary parts of £, Extremization of .S "(g(¢ )) with respect to £
holding ¢’ constant yields the classical action

SHgq)= —A;YY, (23)
where
Y=A"gq, 24)
A=g—gys (25)
and
= 3 L@wy+ome,)). 26)

n=1 a)
Substitution of Eqs. (23)—(26) into Eq. (17) and integration
yield
B(T)=1[|g|"(h/2T)" |g"A |1 @7

Since the infinite expansion in Eq. (19) is equivalent to
an expansion

g{t) = 2h /T) ",

Z [B5(m)¢ 5+ Bimé 31, (28)

where u is a symmetric matrix such that y? = @, and where

=1, (29)
— V2 cos2e (t — 1), (30)

and
¢5=V2sin2w,(t—1), n=123,., 31)

then a theorem proved by Davison* may be used to evaluate
A (T)in Eq. (18). The result is

A(T) = |a| f f expliS " (g(t))/4]
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o [( = dBi(n) dBin) )
j=1 "=1\/(+1') \/(+i)
X —t | (Ref. 5), (32)
V' (+ 2ikT) ]
= lel f—w "'Lw {,»Ul V (2ikT)
x 1]( RO
X exp(iS '(¢(¢))/#)} (33)

=[(2iT)N|a|“2|g|"2 fi (|a||n(w,,)|)]”, (34)

n=1
where the a’s are the eigenvalues of a.

In summary, the propagator for systems described by
Eq. (1) is given by

K(g",t"q',t") = exp(iS{q" ¢ "sq',t VW F(T),  (35)
where
F(T)={[QiTh)"|a]|® |1 T}, (36)
r= ﬁ (la| |2 (@,))), (37)
n=1
P=I— i (2 w,) + 2*(v,)]g/w2 (38)
n=1
2 (@,) =a" =20/, —g/w], (39)
g=b— %E(J_IC, (40)
Q4= — :li(a_lc —ca™), (41)
@, = n'TT/T, (42)
T=t" 1 3)

and S.(q",t";q’,t") is the classical action function.

B. Special case

A simplified expression for the propagator
K (g",t ";q',t ") may be obtained if a is positive definite, so that
a has a unique positive definite square root, x4, and if

g§9'=0% (44)
where

g'=ugu, (45)
and

Q'=uQu. (46)

In this case the infinite product in Eq. (37) and the infinite
sum in Eq. (38) can be performed.

Consider the function

L= ﬁ (2 (0 )2 *(w,)),

n=1

@én
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where
' (w,) =p2 (@) (48)
=1-2iQ/w,— g/ (49)

Note that according to Eqs. (37) and (47), the determinant of
L is equal to I"* since 2 '(w,,) is Hermitian and the determi-
nant of a matrix is invariant under transposition. According
to Egs. (47) and (49),

a o0
3% \ Ly= — $ L (27@)+02"w,)).
Q'\w, n=1 (l)
(50)
Comparison of Egs. (38) and (50) indicates that
D'=u'du (€3]
—i+ [ 2] e 52)
dg’ gw,

Note that the values of the determinants of @ and @' are
equal. Therefore, Eq. (36) may be written as

F(T)=[QiTh)"|a||®’||L |1, (53)
since, as already noted, the determinant of L is equal to "2

Substitution of Eq. (49) into Eq. (47), completion of the
square in both factors, and factorization of the result yield

c= 1+ Z) - eriey |

n

Application of the identity
cos(2x) — cos(2y) _

0 yz )
1—- =
e =11 (1
2 2
(- & - T w)
(km +yy (km — y»

55
yields ©3)
L = cos(2iTQ") — cos{2T (g — Q@ ')"?] 6

2%'T? :
After substitution of Egs. (56) and (52) into Eq. (53), one

obtains the result that the propagator for the special case is
given by Eq. (35) with

F(T)={QiTh)" |a| |G [4T*@g — @'I1|}, (57
where
G (x)= sm(x) (58)

HI. SIMPLE APPLICATIONS
A. One degree of freedom

In one degree of freedom the Hamiltonian function de-
fined by Eq. (1) reduces to the form

1 1
H(gpt)= -2—’;171 ey mbg® + wo pq
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+d @) +e(t)g+ (1), (59

where m, b, w, are given constants and d (¢), e(¢), f(¢) are
specified functions of time. This Hamiltonian describes a
forced harmonic oscillator of mass, m, for which the classi-
cal action is

Sq".q)

1 "3 2 _ "ot
o Umol@" + ¢')cos(@T) — 29"¢']
+ [q" f E (¢)sin(ew(r — t"))dt

+4q J-I " E (¢)sin(w(t” — t))dt ]

mo

dtf drE (t)E (1)
X sinf{w(t” — t))sin{w(r — t'))]

—dmodg” — ¢+ [ Umd*0)—7©)ldr

—mlg"d(t")—q'd(t")], (60)
where
=(b—wp)"” (61)
is the angular frequency of oscillation and
E(t)y=md(t)—e(t) + mod (t) (62)

is the driving force on the oscillator. Substitution of Egs.
(40), (41), (45), and (46), into Eq. (57), and use of Eq. (58),

gives
172
Fr)= (22 )
ih sin(wT)
According to Egs. (35) and (63) the propagator is
172
K(g"t"qt) = ( ) exp(iS{q”.q')/#)
(64)

(63)

mw
i sin{wT)

where S (¢",¢") is given by Eq. (60).
In the special case of Eq. (59) for which
d(t)=e(t)=f()=0, (65)

the propagator for a simple harmonic oscillator is recovered
as given by

K(g"t"q't")
( mo )1/2
“\in sin(wT)

xexp( Sy g +geoston) ~ 207 1)

(66)
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In the limit w—0, this reduces to the free-particle propagator

172
K@) =(3) " emlima — /280
ihT
(67

B. Particle in a magnetic field

The Hamiltonian for a particle in a constant magnetic
field may be expressed in the form

51 1 B \2 qB
Heo = 3 s g (4 - Toe
(68)

where g is the charge of the particle, m is its mass, and B is
the magnitude of the magnetic field, which is taken to be in
the x, direction. Substitution of the coefficients of Eq. (68)
into Egs. (40), (41), (45), and (46) gives

g =0 (69)
and
0 —-w O
Q' = %(a} 0 O), (70)
0 0 0
where
w=3gB/mc. (7D

Substitution of Egs. (69), (70), and (58) into Eq. (57) and use

of Eq. (35) yield

exp(iS.(x",x")/#)
(72)

where S, (x",x") is the classical action for a particle in a con-
stant magnetic field, which is given by

S (x"x) = § mo{[(x] —x{) + (x7 — x3)’] cot(@T)

Wt g m \'2  mo
K(x"t ;x,t):( )

ihT) ik sin@T)

” ’ ” ’ m ” ’
—2(x7'x; —xx)} + T (x5 —x3) (73)
Glasser® has performed the path-integral evaluation of this

propagator.

IV. SUMMARY

The space-time propagator K (¢”,¢ ";q',t ') for a given
system is defined by Eq. (3). It represents the probability
density amplitude for transition of the system from a given
initial configuration, ¢’, at an initial time, ¢’, to a given final
configuration, ¢”, at a final time, ¢ ”. Equation (4) is an exact
phase-space path-integral expression for K (¢”,t ";¢’,t ') for
systems whose Hamiltonians have the form specified by Eq.
(1). This path integral has been performed exactly to yield
the result that K (g",t ";¢',;t") = F (" —1t)

Xexp(iS(q”,t ";q',t Y/ H)whereS(q",t ";q',t )istheclassical
action function connecting the initial and final space-time
points(g’,t )and(g”,t "),andwhere F (¢ " — ¢ ')isindependent
of g’ and ¢” and is given explicitly and in detail by Egs. (36)-
(43) as a function of (t " — ¢ ") and the coefficients occurring
in only the quadratic part of the Hamiltonian of the system.
Under certain special conditions [those stated in the sen-

1301 J. Math. Phys., Vol. 20, No. 7, July 1979

tence containing Eq. (44)], the infinite sums and products
contained in the expression for F may be evaluated and the
result for F simplified to the closed form given by Eqs. (57)
and (58). As discussed in the introduction, the results ob-
tained here may be useful in the quantum analysis of any
system whose Hamiltonian is expressible (exactly or ap-
proximately) in such a form that Eq. (1) describes the depen-
dence of the Hamiltonian upon some or all of the system’s
coordinates and their conjugate momenta.

V. CONCLUSION

In conclusion, the present work will be compared with
two other path-integral investigations in each of which the
propagators are sought for systems which are quadratic in a
more general sense than defined by Eq. (1).

One of these investigations is Feynman’s’ derivation of
the form for the propagator for systems with one coordinate,
y, and with a quadratic action of the form

se@) =4 [ 30) [ 4w dsa
+ fl B () y(r) dt, (74)

whereA (t,5)and B (¢ )areindependent of path, y(z ). Hisresult
for the propagator is the same as the form of Eq. (61), where
the factor Fis independent of ¢', ¢”, and B and is to be deter-
mined apart from a factor independent of 4 by the functional
differential equation

SF/8A(t,5) = — AN(1,5)F, (75)

where N (1,5) is the reciprocal kernel to A (z,5) subject to ap-
propriate boundary conditions. For some cases this equation
may be solved easily.® Equations (74) and (75) may be gener-
alized readily to the case of many degrees of freedom, but the
functional differential equation remains to be solved for Fin
the general case. The present work may be viewed as provid-
ing the required solution for Fin a certain special case (of
fairly broad interest) for which the kernel A4 is a superposi-
tion of & functions and derivatives of § functions.’

The other path-integral investigation of more general
quadratic systems to be discussed here is the treatment by
DeWitt' of a system whose Lagrangian has the form

j)(q’q"[) = %Gj/\ (q9t )qj qk + aj(q’t )q_/ - U(q!t ) (76)
This Lagrangian may be interpreted as describing the mo-
tion of a particle moving in a curved multidimensional space.
DeWitt uses path-integral methods to derive an expression
for the infinitesimal propagator which remains to be iterated
to obtain the propagator connecting finitely separated
space—time points. Equations (35)—(43) give the result of
such an iteration for the special case for which the space is
flat (i.e., G, is constant), and a; and v are of the forms

aj(q’t) = le\g)\ + dj(t) an
and

v(g.t) = gud 4" +p(t)g’ + (1), (78)
respectively. The most interesting aspects and applications'
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of DeWitt’s paper, however, lie outside of the range of this
special case.
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Internal symmetries of the axisymmetric gravitational fields
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The group H of the internal symmetries of the axisymmetric field equations in general
relativity is known to be isomorphic to SO(2,1), which is the double covering of the
conformal group of the hyperbolic complex plane . The Ernst potential £ can then be
geometrically understood as a map £ : R >/SO(2)—5%. The fact that the hyperbolic plane

is split into two connected components is used to introduce an algebraic invariant neZ *
for every axisymmetric solution. It is shown that under reasonable hypotheses this
invariant is related to the number of S' curves where the manifold is intrinsically

singular.

INTRODUCTION

The axisymmetric field equations in general relativity
contain a large amount of symmetries, which have been ex-
tensively discussed by several authors.! The main line of re-
search in this field has been directed during the last few years
towards the study of the infinite parameter group K, which
combines both the coordinate group G and the internal sym-
metry group H.* Nevertheless, there are still some interest-
ing results which can be derived from the study of the group
H alone, as shown in the following.

The starting point of the present approach is to note
that the most natural geometric interpretation of the Ernst
equation is achieved considering the Ernst potential £ as a
map from R */SO(2) to the complex plane with the Poincaré
metric. Because of the isomorphism H~SO(2,1) and of the
fact that SO(2,1) is a double covering of the conformal group
of the hyperbolic plane, one can interpret the internal sym-
metries of the Ernst equation as isometries of the hyperbolic
plane itself. This amounts to translating into elementary
complex geometry the approach by Eris and Nutku.’

The map ¢ is then studied, and it is shown that one can
introduce an algebraic invariant, which classifies the asymp-
totically flat solutions according to their causal structure.

Finally the particular case in which £ depends on a sin-
gle real function is geometrically interpreted as the geodesic
problem of the hyperbolic plane.

GEOMETRIC MEANING OF THE ERNST
EQUATION

The axisymmetric stationary line element in canonical
cylindrical coordinates reads*

ds = f"e*(dz* + dp?) + p'd$*] — f(dt — wdg ¥, (1)

where f, , ¥ depend on p, z only. In this form the field
equations for y decouple, and the relevent problem reduces
to two coupled equations for £, w, which by means of the
substitution

_ -1
dRTERT @
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£—-¢&
Vo =¢ X7 3
L ©
(where ¢ is the azimuthal versor pf R %, and 7 is the three-
dimensional operator) can be transformed into the Ernst

equation for the complex potential & *

€& - D% =2 VEvE “
Equation (4) can be derived from the Lagrangian
density

L="YEY _ y(wevd). 5
GE_ 1y 8(VEVE) )
From Eq. (5) it is apparent that the bilinear operator g( , )
coincides with the Poincaré metric for the complex hyper-
bolic plane #” and the Ernst potential can be considered as
the map

& R*/SO()—7, 6)
which in view of the field equation (4) must be extremal.

It is now obvious that the internal symmetries of the
problem coincide with the isometries of the hyperbolic
plane. These include a continous group (i.e., the conformal
group %)°

ix§~p

E—e =, O<y<2m pp<l, ()
1-pg
and the following discrete transformations:
§——¢, ®
§-4, ®
s—1/8, (10)

Equations (8) and (9) are reflections of 5#°, while Eq. (10)
arises from the fact that the unit disk £€ < 1 is an isometric
copy of the domain £ > 1 under inversion. This explains the
origin of the discrete symmetries discovered by Ernst while
discussing his equation.’

The conformal group (7) coincides with the form of the
group H given by Kinnersley.* Note that the isotropy sub-
group of ¥ at the origin (p = 0) is given by £&—e X£ and
generates NUT transformations of the manifold.’

From the point of view of elementary group theory, the
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present interpretation of the Ernst equation amounts to us-
ing the well-known isomorphism H~SO(2,1), and to noting
that SO(2,1) is a double covering of the conformal group € .

Incidentally one can emphasize that the Lagrangian (5)
presents some formal analogies with the one given by Woo'°
for the o nonlinear model. In that case, however, the gauge
group is SO(3), which is compact, and therefore the confor-
mal factor is the spherical one [i.e., (€€ + 1)?] instead of the
hyperbolic one appearing in Eq. (5). Moreover, the base
space for the o nonlinear problem is R ? instead of R */SO(2)
as in the present case.

TOPOLOGIC AND ALGEBRAIC INVARIANTS

Although one could impose boundary conditions on &
in order to compactify its domain, the hyperbolic plane is not
compact, and therefore it seems irrelevant to investigate the
homotopy classes of the map &.

There is, however, an interesting invariant, which is re-
lated to the algebraic structure of the map £. These, in fact,
can be classified according to the number of jumps between
the two connected components into which the complex
plane is split by the Poincaré metric, i.e., according to the
number # of rotational bisurfaces in R * where ££ = 1. This
number is independent of the coordinates chosen in
R 3/S0(2), although it is not invariant with respect to the
general group of transformations of the metric (3). Note in
fact that the surfaces identified by the equations £€ = 1 may
contain coordinate singularities, the elimination of which
will require transformations involving the asymptotically
timelike coordinate ¢.

For instance, in the case of the Schwarzschild and Kerr
solutions, for which £, = x, £, = px + iqy,(p* + ¢° = 1), re-
spectively, in prolate spheroidal coordinates, it turns out
that n = 2.

Note that as the condition £ = 1 is invariant under the
action of the conformal group %, also the number # is invar-
iant under its action. This means, for instance, that the NUT
generalization of a given field does not change the number n.
The interior of the unit disk of the hyperbolic plane is related
to the “ergosphere” regions of M, where f <0, the unit circle

itself (expect the point £ = — 1) being the domain into
which £ maps the “‘ergosurface.” At the point £ = — 1, f
diverges, showing that £ = — 1 is the image of the intrinsic

singularities of M.

A simple interpretation of the meaning of the number n
can be obtained under few hypotheses on the map £. Choose
prolate spheroidal coordinates x, y or R */SO(2), and assume
that

(A) the gravitational field described by £ is asymptoti-
cally flat. In particular, lim,___ |£[|=~1.

(B) reflecting the space time with respect to the equato-
rial plane (i.e. y— — y) the angular momentum of the gravi-
tational field changes sign, i.e., £—~¢&. Therefore £ is real on
the equatorial plane (y = 0).

(C) £ is an odd function of x on the equatorial plane."
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Then the number m. of solutions of the equation £ = 1
is equal to the number m_of solutions of § = — 1. Obviously
on the equatorial plane m, + m. = n, and therefore
m_ = n/2. Since on the equatorial plane £ is a function of x
alone, there will be n/2 distinct values x,..., x,,, , where
& = — 1. These points actually represent trajectories of the
axisymmetric group, which topologically are S'! curves (of
which one can possibly degenerate to a point) along which

J— o« and therefore the manifold is singular.

Therefore one can conclude that under the hypotheses
(A),(B),(C) the number of ring singularities of the space time
described by £ is exactly n/2.

“GEODESIC SOLUTIONS”

In the special case when £ = £ (7) depends on one real
function 7: R */SO(2)—R, the present approach yields a nice
geometrical interpretation. Note first that & (7) is a curve in
the hyperbolic plane. The Ernst equation reads

m L pdEt A VT
—D)—=42£-= = — (£~ 1) ——
(6 dr? ¢ dr & ) dr \yr<Jr
(11
and coincides with the geodesic equation on the hyperbolic
plane if 57?7 = 0, with  as affine parameter.

If 7 is not harmonic, one can introduce a new function
a(r), in terms of which Eq. (14) becomes

_ 2 _JE?
- 1% ar L yn g 97
da do? da

_ 2
= - DEa LT
da 7
Choosing a such that

L VA (12)
a' VrVT
one has

4% | 74 _

-1 da? T da 0
which is again the geodesic equation on the hyperbolic plane.
From Eq. (12) one has that \7?a = 0, and hence a must be
harmonic. Therefore, one can conclude that the geodesics of
the hyperbolic plane depending on an affine parameter,
which is a harmonic function defined on R */SO(2), corre-
spond one to one to the solution of the Ernst equation de-
pending on a single real function. These include the Weyl"
and Papapetrou’ solutions.

'See W. Kinnersley, in General Relativity and Gravitation (Wiley, New
York, 1975) and references quoted therein.

*For the definition of these groups see Ref. 1 and more recently W. Kinners-
ley, J. Math. Phys. 18, 1529 (1977).

’A. Eris and Y. Nutku, J. Math. Phys. 16, 1431 (1975).

*A. Papapetrou, Ann. Phys. 12, 309 (1953).

‘F.J. Ernst, Phys. Rev. D 7, 2520 (1973).

*See, for instance, I.M. Singer and I.A. Thorpe, Lecture Notes on Elemen-
tary Toplogy and Geometry (Springer-Verlag, New York, 1967).

’F.J. Ernst, J. Math. Phys. 15, 1049 (1974).
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*W. Kinnersley, J. Math. Phys. 14, 651 (1973).

°C. Reina and A. Treves, J. Math. Phys. 16, 834 (1975).

A_A. Belavin and A.M. Polyakov, Pis’ma Zh. Eksp. Teor. Fiz, 22, 503
(1975) [JETPL Lett. 22, 245 (1976)]. See also G. Woo, J. Math. Phys. 18,
1264 (1977), where the Lagrangian density for the o nonlinear model is

given in complex stereographic coordinates.
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"'Although this condition could appear a bit “ad hoc,” it is satisfied by the
entire class of the Tomimatsu and Sato solutions {see A. Tomimatsu and
H. Sato, Prog. Theor. Phys. 50, 95 (1973)].

""M. Weyl, Ann. Phys (Leipzig) 54, 117 (1917).

""For more details on these *“geodesic’ solutions, see V. Benza, S. Morisetti
and C. Reina Nuovo Cimento (1979) (in press).
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Resolution of Fredholm equations with kernels K (z—z,)) by

operational calculus
Do Tan Si®

Faculté des Sciences, Université de I’Etat @ Mons, 7000—Mons, Belgium

(Received 27 November 1978)

We show that the solutions of a Fredholm equation with kernels K(z—z,) is the
transform of its second member in a transformation defined by a differential operator.
The calculations of these solutions are then a matter of the powerful operational

calculus.

I. INTRODUCTION

It is well known' that the Fredholm equations,
;w/(z)z/lf' K (z — 2)¥(2,) dzo + & (2), (1)

of the first (1 = 0) and second kind (& = 1) may be solved
by taking the Fourier transforms of both sides of them. This
conventional method implies the calculations of three Four-
ier transforms which may be cumbersome.

The aim of this work is to give another approach to
solve Eq. (1) using some operational calculus techniques
which may greatly simplify the calculations: One or at most
two Fourier transforms are needed. The outline of the meth-
od is presented in Sec. II. Some examples are given in Sec. I11
for comparison with the conventional method’s results.

Il. THE METHOD

The method we use in this work is based on the follow-
ing considerations.

Let £(z) be an analytic, square summable function of
which a Fourier transform exists,

F(z)= % jj e~ "*f(z,) dzo. )

As exp( — iz,2) is an eigenfunction of the derivative operator
D =d /dz, one can write

D) exp( — izoz) = f(2,) exp( — izo2). &)

Replacing (3) in (2) one obtains the relation

F@)= - j T fDYe  dzy = f(iD)S@), (&)
27 J - »

where 8(z) is the Dirac delta function. By a change of vari-
able from z to (z — z,), one finally gets the useful relation

F(z —2) = f(iD)5(z — z0), (5)

which allows us to write Eq. (1) under the form

W:M(m)f 8(z — z)¥ (20) d2o + 6 (2)

*'Work supported by the IRIS program sponsored by the Belgian Ministry
for Science Policy.
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=Ak(iD)¥ () + ¢ (2. (6)

In(6), k (z)istheinverse Fourier transform of K (2), if it exists
and is everywhere derivable. The solution of Eq. (1) may
then be put into the operational form

(i — Ak (DWW @) = ¢ (2). (7
From (7) we see that ¥ (z) is the sum of a term ¥, (z) such
that

(u — Ak (DY, (2) =0, (8)
and the particular solution

1

u— Ak (iD)
In order to calculate ¥, (z) we note that:

V,(2) = ¢ (2). )

(1) If ¢ (2) is an eigenfunction of the operator & (D ) with
eigenvalue «, one gets immediately

¥V, (@)= (u —Ak)'¢ (2), when u£Ax. (10)
(ii) If ¢ (2) is not an eigenfunction of & (iD), one has to

calculate an expression of the form £(iD )¢ (2). This may be
done using the following formula,

(F*¢ )2) = Jjo F(z — 20 (20) dzo = f(iD )¢ (2),(11)

which is a direct consequence of Eq. (5) and where the left-
hand side is the convolution product® of ¢ (z) and the Fourier
transform of f(z).

Another way of calculating an expression of the form
f(iD)¢ (2) is based on the remarks that Hermite polynomi-
als*** and Laguerre polynomials* may readily be put into
this form:

H, (2) = exp( — D?*/4)(2z)", (12)
LeéZy=(~)Y'(1—-D)' *%"/n, (13)
Z’L(@)=(1+a),F'(—;14+a —D)"/n. (14)

llIl. EXAMPLES OF APPLICATIONS

Let us solve by the present method some Fredholm
equations found in Ref. 1,

¢ (2) = foc expl — (z — z0)'1H (z — 2 ¥ (2,) dz,.
- (15)
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Here we have
k(@=V r exp ( — -%:—)(iz)P, (16)

so that ¥, (2) is an arbitrary polynomial of degree (p — 1)
and the particular solution has the form

V()= —\71__—_exp(— %)(—D)“‘%(Z)- %))

T

Now, by (12) we can write

1 % 1970}
b= —=(-0)7 32 Dy
\/ T s=0 5!25
Besides, from the relation DH (z) = 2sH, _ (z), one gets
s!
D PH(Z)=2"P———H, +Q, @, 19
@) 19 @D+ 0,1 (19

where @, (2)is an polynomial arbitrary of degree (p — 1).
Finally,

1 0 ¢ (‘)(0) p—1
Vo)= — H, )+ 0,2,
= sgo 2P+ p) O F ;o
(20)
¥ (2) = Ae®!*! +/{J- e~ 2721y (z,) dz, 21
Here one has
2
k(D)= ,
(D) Do
so that ¥, () verifies the equation
1—-24-D¢
Puting k § = 24 — 1, one gets
W, (2) = Ce* % 4 Ce— %2, (23)
The particular solution is given by the equation
V()= _1_—_2_,480421 24
? 1—-24-D¢
4 (ea'zl - —z-i——ea'zl). 25)
D>k}
Putting now
24
I(z) = —=——¢2I7 26
Dt k2 (26)
1307 J. Math. Phys., Vol. 20, No. 7, July 1979

and remarking from (11) that

SUD)p (2) = (iD)F (2), 27
where{ (z)isthe Fourier transform of ¢ (z), onecan also write
2iad — ik
1@) = —22 ¢ kel 28
@) kD" — o) (28)
Comparing (26) to (28), one gets
@)= —2 _eolrl Ak (g9
a?+k (@ + k Dk,

Finally, from (23), (25), (29), and the property of symmetry
of ¥ (z) with respect to the origin, one can put ¥ (z) into the
form

a’—1

at+k}

V()= Ae™ !l 4 C cos(k,|z| — ), (30)
where the constants C and S are related to C,, C, by the
relations 2C, = 2C, = Cexp ( — i#) and 2(C, + 2iald /
(@ + k Yk,) = C exp(iB). These relations lead to

Csinff = _Z‘M_A- 3D

@ + k Dk,
ie.,

C=244ks @+ k2~ "% and tanf = f— (32)

0

IV. CONCLUSIONS

We think that the method described in this work is in-
teresting in that it allows the transformation of a type of
integral equations into a differential equation of a infinite
order which one may solve using the formula (11) or the
differential representations of special functions. It seems to
us that the expressions of the type f(D )4 (z) are worthwhile
considering more widely for solving differential and integral
equations and defining more special functions.
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Outgoing radiation is introduced in the framework of the classical predictive
electrodynamics using Lorentz-Dirac’s equation as a subsidiary condition. In a
perturbative scheme in the charges the first radiative “self-terms” of the accelerations,
momentum and angular momentum of a two charge system without external field are

calculated.

INTRODUCTION

This is the first of a series of two papers dealing with the
classical dynamics of a radiating system consisting of two
structureless interacting charges. We assume that each
charge is moving in the retarded field of the other according
to Lorentz-Dirac’s equation.'

We take “the absorber” point of view of Wheeler—Feyn-
man?* and use the framework of predictive electrodynam-
ics.** This theory is seen to be consistent with the phenom-
ena of classical radiation and more precisely with the
Lorentz-Dirac equation.

In Sec. 2 we show within a perturbative scheme in the
charges how to construct the dynamical predictive system
(the accelerations) of two classical interacting charges when
radiation is present and there is no external field. Then in
Sec. 3 we give explicitly the first radiative “self-terms” of the
accelerations.

To fourth order in the charges (n + m<4, e,e7") the
other terms in the accelerations, i.e., terms in e,e, and e?e3,
are shown to be those of Refs. 4 and 5.

Section 4 contains a review of the definitions of Hamil-
ton-Jacobi coordinates, momentum and angular momen-
tum in predictive relativistic mechanics together with some
techniques to calculate them in our perturbative scheme.
Proofs and explanations are omitted and the reader is re-
ferred to the work of Bel and Martin.*

Next, in Sec. 5, we calculate the first radiative “self-
term” of Hamilton-Jacobi’s coordinates, momentum and
angular momentum in the perturbative scheme. For all those
magnitudes the terms in e,e, can be found in Ref. 6, while
terms in e3e3 for the Hamilton—Jacobi’s momenta will be
given in paper II (this issue). Our calculations show that our
radiative system is not conservative in the sense of Ref. 6:
Angular momentum does not recover its free particle expres-
sion after the two particles have undergone mutual interac-
tion. This fact allows us to compute the lower “self-term” of
the total intrinsic angular momentum radiated by the sys-
tem. This is done by calculating the limit for the “future
infinity of the first radiative *‘self-term” in the intrinsic angu-
lar momentum.

Finally we calculate the 3-accelerations of the two
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charges to third order in 1/c¢. This gives us the first correc-
tion to the accelerations which are derived from Darwin’s
Lagrangian,” when outgoing radiation is accounted for.

More detailed calculations, including scattering cross

sections and the 4-momentum balance of a scattering pro-
cess, will be given in paper 11.

1. LORENTZ-DIRAC EQUATION FROM THE
POINT OF VIEW OF PREDICTIVE RELATIVISTIC
MECHANICS (PRM)

Let us consider a system of n point structureless classi-

cal particles. In PRM the dynamics of such a system is gov-
erned by a differential system of the form

dxg .
=Uy
ds,
du“
4 _ talei’w
dsa g ( b c’)
(a’B57/"" = 0y192’3;asbyc9"' = 1y2y-~~’n)s (11)

where x|, uS,and s stand for the 4-position, 4-velocity, and
proper time of the particle a. The functions & ¢ (the accelera-
tions) are Poincaré invariant 4-vectors which are the solu-
tion of the system

(24 [e4
LAY A (12

ax“r Juc?

where we have raised index @’ to invalidate the summation
convention, which will only work in the case where equal
indices stand in covariant and contravariant positions, re-
spectively. According to this, the index p is summed in (1.2).
Let us note that we will raise and lower latin indices without
change of sign. Finally @’ means “‘different from” a.

The functions § ¢ also satisfy the constraints

U = 0. (1.3)
This guarantees that solutions of (1.1) initially satisfying
u> = — 1(Wechoosesignature + 2)will maintain this rela-

tion forever.

We summarize here the main results of PRM. Further
details can be found in the original papers.®®
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Using perturbation methods, and imposing the com-
patibility of PRM with classical electrodynamics Bel and
Martin and co-workers have singled out the unique accelera-
tions £ ¢ describing the classical particle-particle electro-
magnetic interaction.**? Classical electrodynamics, through
the Lorentz force law and the formula of retarded (alternati-
vely advanced or time-reversal) potentials, specifies the val-
ues of functions £ ¢ for arguments x% standing on null
configurations,

(xfx - x:’)(xaa - ‘xa'a) =0. (14)

Because of (1.1) PRM is a dynamical theory of “Newtonian
type” in the sense that a finite number of initial conditions
(more precisely initial positions and velocities) are enough to
determine the trajectories. Hence the word predictive in the
name (predictive relativistic mechanics) of the theory. Fol-
lowing this terminology we will speak about predictive elec-
trodynamics as it refers to the electrodynamics built into the
framework of PRM.

PRM, as it has been described here, concerns itself with
isolated systems of particles. In this sense it seems at first
sight that predictive electrodynamics is unable to account
for the fundamental phenomena of electromagnetic radi-
ation. However, that this is not the case can be clearly seen if
we take the point of view of Wheeler—Feynman?~* and others.
According to these authors the theory of classical electro-
magnetic radiation is only a way to account for the interac-
tion of a given system of charges with all other charges of the
entire universe (theory of the absorber). In particular, the
Lorentz-Dirac equation for an accelerated radiating charge
is given by

2,
o= L Faufy 2€ o _ g, (1.5)
m 3m

where u%,& %, e, m are the 4-velocity, 4-acceleration, charge,
and mass of the electric charge, respectively. F *Pis the given
external retarded electromagnetic field acting on the charge.
Finally £ “ stands for (d /ds)é ® and s is the proper time of the
charge.

If we take Eq. (1.5) as the differential equation describ-
ing the charges’ motion we would have to abandon predic-
tive relativistic mechanics, since Eq. (1.5) is a third-order
differential equation. Thus if we want to keep predictive elec-
trodynamics, Eq. (1.5) has to be taken as a differential equa-
tion for the acceleration. In fact, we always have differential
equations for the accelerations in PRM; e.g., Egs. (1.2),
which are by no means the differential equations of the parti-
cle motion. In each physical situation we must supply (1.2)
with the good asymptotic conditions in order to get a unique
acceleration £ 2. Then if we plug into (1.1) the acceleration
obtained in this way, we will be able to write down the equa-
tion of motion. Analogously, Eq. (1.5) has many solutions.
(For example those accelerations which allow for the run
away trajectories.) The problem consists in finding the right
asymptotic conditions in order to select the physical ones.
We assume now that the physical solutions, £ %, of (1.5) can
be expanded in powers of e,

Ef=e E7 4 et ET 4 o, (1.6)
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Itis obvious that (1.5) has a unique solution of the form (1.6).
Furthermore, accelerations such as (1.6) exclude automati-
cally the pathological solutions of (1.5) called run away solu-
tions, " since these solutions are not analytical functions in e
(see for instance Ref. 11). For instance we get for the first
terms of (1.6)

lé—a: iFa/ju/i’ zé—azo’ 3§a: 2 FaBu[J'. (17)
m Im?

2. THE CASE OF TWO PARTICLES

We will consider, within the framework of predictive
electrodynamics, the case of two charged particles mutually
interacting, without external fields, but taking account of
their electromagnetic radiation. We write an equation simi-
lar to (1.5) for each particle. (Remember that we raise and
lower latin indices a,b,--- without any change: £ ““=¢ ;. Here
again we have raised the index a to invalidate the summation
convention.)

e, 2e2 .
o= Fgpul + (€5 —&ous
a 3m(l
G=_——|, 2.1
(§a ds @

a

where a relates to the particle we are dealing with and F; 5is
the retarded electromagnetic field created by particle
a'(a'+a) on the particle a. The problem with equations (2.1)
is that they are not differential equations—since the term
(e, /m,)F &z is not defined for any x{ and x5, but only for
null configurations

(xg — x[ll)(x2(1 - xl(l) = O (22)

A similar problem must be faced when one considers the
Lorentz equations of two interacting charges

£ = (e./mYF 3, 2.3)

where we have written E ¢ instead of § § to denote the accel-
erations. Using (2.3) as asymptotic conditions and making
the assumption that accelerations can be expanded in powers
of e,e,, a unique acceleration to be used in (1.1)  can be ob-
tained,** as explained before. This acceleration & ¢, could, in
principle, be determined by using a perturbative scheme in
the coupling constant g = ee,. The first two terms in /\the
series, which we write in evident notation "D£ 2, 2¢ 2 are
given explicitly in Refs. 4 and 5. [Attention must be paid to
the fact that the a/c\celeration notation is slightly ambiguous.
The acceleration £ § about which we are speaking here is not
the same as in (2.3). In (2.3), it is only defined for null con-
figurations (2.2) and here it is defined fo/r\ any pair of four
positions x{ and x§ and coincides with £ ¢ in (2.3) for null
configurations. Something similar can be said about func-
tions £ 5 in (2.4) and (2.1), respectively.] Now we substitute
Eq. (2.1) for the new equations,

2
2e;,

3m

EX=F 4 L Eu. 2.4)

a

That is to say
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2e2
£o= 0

2 LOE 2
S — £+ OES O

(2.5)

a

Assuming that £ ; can be expanded in powers of e,,e, we get
for the first terms

(Ll)é—(x:(l,l)é-\a (zz)é. 2.
a U7

("l)é— e, l)g

@

(2.6)

Q.7

where V£ 7 is the coefficient of e e, in the expansion of £ 2.

Then we have a crucial point to clarify: Does & 2, as
determined by (2.4), satisfy Egs. (1.2)? It can be easily seen
that this is the case for all orders. Furthermore, £ ¢ in (2.4)
satisfies (1.3), so it is also easy to see that (1.3) is satisfied by
&< given by 2.4).

Summing up, we have two accelerations, £ ¢, which de-
scribe a predictive relativistic dynamical interaction because
Eqgs. (1.2) and (1.3) are satisfied. Also £ ¢ satisfies Eqs. (2.4)
with Eq. (2.1) as asymptotic conditions; hence this predic-
tive interaction describes two mutually interacting charged
particles with outgoing radiation and without external
fields. [For a more rigorous approach to Eq. (2.4) see Sanz,?
who first and independently of us has adopted most of the
points of view that we have developed in Secs. 1 and 2.}

3. THE FIRST RADIATIVE “SELF-TERM” IN THE
ACCELERATIONS

As it has been pointed out in the last section, the accel-
erations £ J corresponding to the predictive electrodynamics
of two isclated particles (no Dirac term, no external field)
are in principle calculable within a perturbatlve scheme on
the coupling constant. g=e,e, and " VE = DE are explictly
given in Refs. 4 and 5. Here we calculate the first radiative

“self-term” in the accelerations; this is )¢ . According to
(2.6), [(2.7)] we only need ("Dg @ ( = (:DE ) (o calculate
G.Dge For ”§ “ we have the expression*

(l'l)gz = (7][51, 772‘2 — 1),

3.1
where x§7 — x§=x and (xu, )=x"u,,, (4,u;)=ufu,,, and
r=x + (xu, )] 3.2)

Now we have to compute & ¢. In order to make the calcula-
tions easier, let us introduce a system of new variables which
will replace x%,u{,ut. We define the three linearly indepen-
dent 4-vectors

(2,12)x7]

LQruug —

aa

ho=x" — zuf + zu§, 15=uf + (nu)ul 3.3

where
2= Na[(¥ts) + (i) (xu, )]
o [y —1]

These two 4-scalars, z,, with 4“4 and (1,u,)* — 1 constitute
a set of four independent variables:

hi=hoh, A=(uu)y -1, z,

(3.4)

(3.5)
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and they replace the 4-scalars x?, (xua), (1,u,). With these
new variables, using the definition of (3.2), 7, can be written

ro="[h?+ A2 3.6)
From (3.1) we get
gy P gy 6D
mery myr,
where
k= — (uu). (3.8)

Now since we want the first order in £ ¢, "¢ % in our
notation, we can write

a(l Mg a
q, 1)§ = S ~_2a (3.9)
IxP
On the other hand, it can be seen that
@ b
r o~ o, ut —2 =0, (3.10)
ax{t/v axup
2 dz
u’ A _,, u—> =5, (3.11)
Ixr Ixr
thus
w2 -9 (3.12)
ox¥ aJz¢

in the system of variables (3.5). Taking into account (3.10),
(3.11), and (3.7), the calculation of (3.9) is straightforward.
We get

. In kA 34 22
ange_ ja_ﬁha+( L )t“, (3.13)
a 5 2.5 2.3/ ¢
m,r, mer, myr,

and using (2.7)
2n.kA %z, ap (2A z2 2 )

m2rs

1%, (3.14)

a

Goga - _
a
m2r) 3m2r

4. MOMENTUM AND ANGULAR MOMENTUM
FOR TWO PARTICLES

In this section we review the definitions of momentum
and angular momentum in PRM, the asymptotic conditions
and calculational techniques. Proofs and detailed explana-
tions are omitted. We refer the reader to Ref. 6 for them.

The momentum P ¢ is a 4-vector invariant by M, trans-
lations such that

dP“ d
—0 (a=122L = FEI-T) @)
ds, ( ds, a ax § (

The angular momentum is an antisymmetric 4-tensor,
J % such that

s’
=0 4.2)
das,
and its behavior under M, translations is given by
af3 af3
o Al 8P« — 8PP 4.3)
axy ox)
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Let us consider a canonical coordinate system g, p; in
PRM. If g% — x%, p¢ are invariant vectors under the Poin-
caré group they are said to form an adapted canonical co-
ordinate system. For such a coordinate system we have

P =pt +p5, “.4
T = qop™ — qip™, (4.5)

where P%, J“3 given by these expressions are a solution of
(4.1) and (4.2), (4.3), respectively. A particular kind of
adapted canonical coordinates are the so-calied Hamilton—
Jacobi coordinates, which are characterized by the supple-
mentary relations
ap; _ 0 dq,
ds, ds,

= 8up Pa- (4.6)

We will first calculate a system of Hamilton—Jacobi coordi-
nates and then (4.4) and (4.5) will give us P* and J “". In this
way when determining momentum and angular momentum
we get a coordinate canonical system and this is interesting if
one wants to quantize the system. Calculations will be made
in the perturbative scheme that we have mentioned in para-
graph two. So, we make the assumption that pg, ¢ can be
expanded in a power series of e,,e,. Accelerations £  are
known explicitly in this perturbative scheme up to fourth
order: "¢ “is givenin (3.1), V£ ? (term relative to ele, ) in
(3.6) and *?¢ *is not given here because we will not use it (it
can be found in Ref. 4).

To the same fourth order we have to calculate
(t.hpe GDpa and Hp® and the same for ¢2. The first terms,
(. ”p and (hDg@ can be found in Ref. 6: Obviously they are
the same as in the more conventional case where the Dirac
term 1s absent. We will limit ourselves to the calculation of
the terms (3.1) which represent the first radiative “self-
terms.” We are able to do this because in the differential
equations (4.6) they are not coupled to terms *?)p2, Vg,

Neither are they coupled to *?£ .

In order to get a family of Hamilton—-Jacobi coordinates
giving us to this order one unique momentum and one
unique intrinsic angular momentum, we need to define ap-
propriate asymptotic conditions for Egs. (4.6). To do so we
work with the system of new variables (3.3).

The asymptotic conditions that we are going to define
are of two different kinds, corresponding, roughly speaking,
to the assumption that we have a free particle system when
(a) x*— + oo or when (b) ¢,¢,—0. As far as case (a) is con-
cerned it can be seen that in the system of variables #2,z,, A ?,
the limit x>~ + oo corresponds to one or both of these two
different situations,

D hisw, Yz,

vV ok 4.7

2
X °°:>{(11) 2y o0,
where y takes the values + 1 or — 1. Situation (I) means
that we consider successive pairs of trajectories more and
more further away. Situation (II) means that we go to future
infinity (¥ = 1) or past infinity (¥ = — 1) along the straight
lines defined by the two initial 4-velocities. To distinguish
both cases—future or past infinity—we will put x*— o s o1
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X*—w ,, respectively. With these notations the first group of
asymptotic conditions to be attached to (4.6) is

lim p% = mu®, llm —(qa —x9) = (4.8)
or
. . 1
lim p; = m,ug, lim —(g7 — x3), 4.9)
X'—oc, X roe, X

while the second group leads to
©pd g = x¢. (4.10)

D% = mul
Because of (4.8) and (4.9), p5.q; are called “regular” in past
infinity or future infinity, respectively.

It can be proved that if for a PRM system there exist
invariant Poincaré vectors pZ,q5 — x5, such that (4.6), (4.8)
[or alternatively (4.9)] are satisfied, then p%,q% are a set of
canonical coordinates and so a set of Hamilton-Jacobi co-
ordinates. Finally it can also be shown in a perturbative
framework that Hamilton-Jacobi coordinates regular at in-
finity really do exist."’

Under supplementary assumptions which roughly
speaking reduce again to the general assumption that we get
a free particle system when x>~ + o, it can be proved that

PPoe = — M. @10

These identities show that, in the language of Dirac,* we are
in the presence of a dynamical system with primary con-
straints. These constraints have their origin in the identities

u> = — 1. Primary constraints introduce difficulties when

[
one tries to quantize classical dynamical systems. One way of
getting round this problem is to substitute the dynamical
system (1.1} by a new auxiliary one, the so-called “‘auxiliary

dynamical system™”:

Do e ITE e, @.12)
dA daA
where A is a 4-scalar parameter and (7= — 7%7,,)
0505l = Tk GOhm T lum o). (4.13)
In this way we go round the constraints u2 = — 1 since the

% are now to be considered as two new independent varia-
bles to add to the other four: x?, (x7a), (7,7,). Definitions
(3.3) and (3.4) now become

ho=x* _ o + 2,75, X E?Ti + () (4.14)

and

ZGE na[ﬁ'(xva) ‘};(771772)(X7Ta')] ) (4 15)
A,

with

A=) ~ mar (4.16)

Now we can determine Hamilton—Jacobi coordinates, 55,45,
regular at past (or future) infinity for the dynamical system
(4.12), taking 4-vectors 5,45 such that 55, g5 — x5 are Poin-
caré invariant and such that they are solutions of (4.6) satis-
fying the asymptotic conditions
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lim 52 =7% lim Lge —xm, (4.17)

X s, x? >0, X

or the equivalent ones for the infinite future, all of which are
the subsidiary conditions corresponding to (4.8) or (4.9), re-
spectively. On the other hand, conditions (4.10) become

(0.0)

g5 = x5, (4.18)

0,0) s
a a

Py = 7TZ!

The differential operator d /ds, is now

4 _ ™~ J +6¢ d

ds, Ix® I
instead of the similar expression given in (4.1). Finally the
identity (4.11) becomes

Pobaa= — Mol =T, (4.19)
From g, g3 we get the momentum, P<, and angular mo-
mentum, J “ of the auxiliary dynamical system (4.11)
through expressions like (4.4), (4.5). Then it can be proved
that we obtain P and J “?, the momentum and angular mo-
mentum, respectively, of the original dynamical system (1.1)
by “mass geometrization” of P*and J oB that s, making the
substitution 7§ —m ug.

5. CALCULATION OF THE LOWEST RADIATIVE
“SELF-TERM” IN MOMENTUM AND ANGULAR
MOMENTUM

Taking (3.14) into account we get from (4.13)

—_— s
Ghga — _ 2y mokA 2, he 2y (A Za _ _1‘)~Zw

’ Tefa Fa\ T 3

5.1

where

F=(mh+ A3, k= — (mm). (5.2)

Let us write p§ in the general form

B = o8h A flaal § + gl - (5.3)

n Ref. 6 the reader will find the first order expressions
In Ref. 6 th d 11 find the first ord p

for 5% and 4%, which in our notations are -"52,(" Vg%, Here
we are interested in >4 (and later on in ®'¢%). From the
first group of Eqgs. (4.6) we get to this order

C9(3,1)"(1! 8(0,0) Foded
w 4 4 (3.1)9;; 2 =90, (5.4)
axt ot
or taking (4.19) into account
Db (ll),gzaz _ 6ah 3.y Z» (5.5)

where 8, is the Kronecker delta and D, is the differential
operator

ad
Ixr’

(5.6)

— P
D,=m4

Now it can be seen that

D =D, =0. (5.7)
From (4.19) and the first equation of (4.18) we get
“V,, =0, (5.8)
Taking this and (5.7) into account, Egs. (5.4) become
w2 kA,
— = Saps (5.9)
dz, i
T 2 20
Aaw _ ( _ )5ab, (5.10)
9z, 3w, oy
where use has been made of the following results:
D =Dh*=DA*=0, Dji, =6, (5.11)

[We can get (3.10) and (3.11) from (5.7) and (5.11), respec-
tively, by making the substitutions: 75—m u’.] On the other
hand, we have the asymptotic conditions (4.20) (or the
equivalent ones for the future). The only solution to (5.8),
(5.9) “regular” at infinity is

3= ZW‘ZZ,EXZ 2 2ad~a 27;17%'
avg, = - _ . (5.12)
2 e P 3T
oy _ 2, A
“ 3miJve F up
Jzu 72dz, 272z, (5.13)
e B 3R |
So we have
Wik~ 2mE, -
Gga — _ NaTa he 4 2 27a (5.14)
3727 3miF,
Let us calculate * "% From the second equation (4.6) we get
D, Vg = 3Dgag (5.15)
and if we write
(3,1)4:11:% (3,1)’77a;l“a+<3.1)1;aa;‘fzz+<3,l>vaa,?aa,, (5.16)
Egs. (5.15) become
eV — 2tk
Va — A .17
9z, 3,
Vv, 2
aa _ Tatas (5.18)
9z, 3miF,
F3Ds
Vaa —0. (5.19)
iz,

|

The general solution of these equations satisfying the asymptotic condition given by the second of the equations (4.17) (or
the equivalent ones for the future) gives the following expression for *'Pg2,

21701?( y z',,) e 27
3T 7,

£+ ST G, T, (5.20

Ghza _

0 3nthe

A F

a
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where $Vv_, are arbitrary functions of &2, A%, 7, except for the condition that limk ' .v,,, = 0. We can see that at variance

with @52, we do not have uniqueness for the coordinates

Gz

Using expressions (5.14), the formula (4.4), and making the substitution 7°—m u% we get one unique radiative “self-

term” in linear momentum,

2 2 3 3
e e e ez,
2 2 1 2 1 a
rpe=ele, 3VpY 4 ele, CVpg = 3 eek (— — ) he + n ]ez(—'— s+ < l).

mz"% ml";4

(5.21)
mlrjl myry

Since the g% given by (5.20) are not unique, the radiative “self-term” in angular momentum "/ aB given by (4.5), (5.14),
(5.20) is not unique. Nevertheless it can be seen that the radiative “self-term,” "W %, of the intrinsic angular momentum W ¢,

defined by
"= ST [PE(— PP, 8 = 1]

is unique. We first get

1

3, G Dpa 3 (I.S)Wa _
eie; We + ese; = — —
[ _ ((O,O)Pa (O,O)Pa)] 12

/Tz
- ((0,0) pa 0.0 1‘5;
and then
1

kYoo

’W"Ee?ez (3,1)Wa + egel (1,3)Wa —

2miA 2z,

(mi + m3 + 2mmyk )\

3(m? 4+ mi + 2mm,

2mPA %z,

3(m3 + m3 + 2mm,

where we have put

8P xpu uy, =0 (5.25)

One could ask why we have not considered the terms
(Ihpa (.hga The answer is that if one considers them, then a
similar calculation such as the one that has been used to
calculate (3’1)-‘2,(3‘1)4:’ giVeS (1’3)13? = 0, (1’3)63 = (‘I’B)Vaa?'g
+ 49y 1% and these expressions do not change either
(5.21) or (5.24). "W “ depends on y and so it has different
values at past or future infinity (it goes to zero at one of these
two infinities depending on y). In the language of Ref. 6,
when radiation is present, # < is not “conservative.” Of
course, W ¢ maintains its numerical values along a given pair
of trajectories, but it does not keep the form of the expres-
sions corresponding to free particles, which W “ takes at the
past (or future) infinity. On the other hand, P* does not
depend on 7, so it is “conservative.”

When the Dirac term is not considered, P%, W< are
conservative to first order®: That is, "VP%, "D 2 do not
depend on 7. [It can be easily recognized that terms like
(nmpa (nm e are the same if we consider the Dirac term
(Lorentz-Dirac equation) as if we do not (Lorentz equation
with retarded potentials).].

1313 J. Math. Phys., Vol. 20, No. 7, July 1979

k),g”

(5.22)
| el — 2, 00@) + e 1y = 240
T, + e, (3»“;72,)] 8T 7 s (5.23)
e s - 2)
k);ﬁ,] +ege,[32":::2 (717_ B _i:—)
ne, (5.24)

-
So, to fourth order in efey’ (n + m<4), we have that the
momentum P¢
P%=mu® + mu3 + eje, "VP + elel @PPe 4 PY,
(5.26)
with "P  given by (5.21), is numerically conserved along any
given pair of trajectories and the same can be said about W .
In the spirit of field theory and to this order the first part of
(5.26)— PP =mu% + mus + ee; "PP* 4 ele2 GDpa_
could be interpreted as the total momentum of the system,
consisting of the two charges plus their electromagnetic
field, excluding self-interactions, while "P * would represent
the momentum of the radiated electromagnetic field that
takes the self-interaction into account. Neither P %, nor "P*
are conserved numerically by themselves; but their sum to
this order is conserved. In a similar way we could define” W ¢
and then decompose W as PW = 4+ "W <.

Now we make the choice y = — 1in (5.24), so we take
the intrinsic angular momentum W “ to be “‘regular’ at past
infinity.

Let usintroduce "W such that "W < = "Wn“, Then obvi-
ously we have

lim "W=0

2
X'—>o0,
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and for future infinity

W, = lim W= _ 4m,me.e\(ei/m: + e3/mik

- 3(m? 4+ m? + 2mm;k ) AR
(5.27)
Since
lim hpyra_,
we have the evident notation
llm W{x — ((),())W{z + e%e% (2‘2)W+ xna + rW+ Ocna,
: (5.28)

where it is clear that having W« = ©OW ® at past infinity we
do not recover the form of this expression in the infinite
future. [From the definition (5.25) we get

OCOW e = mmn®/(m? + m3 + 2mmk )2

On the other hand, if we calculate

P = lim "P¢

X e,
we will get zero since "P * does not depend on .

From the point of view of the “theory of the absorber”
(see Sec. 1) efed VW, _n" 4+ "W, _n“could be interpret-
ed as all the intrinsic angular momentum that our two parti-
cles, have delivered during all their history to the charges of
the entire universe. The term "W, _n® accounts for the in-
trinsic angular momentum which corresponds, in the lan-
guage of field theory to the “self-terms” of the radiated elec-
tromagnetic field, while the other term ejes @2 W _n“
belongs to the system consisting of the two charges plus their
electromagnetic field (self-interaction excluded). This term
would be absent if the two charges were to interact through
time-reversal invariant potentials instead of through retard-
ed ones, as it is actually the case in the Lorentz-Dirac equa-
tion (2.1).

Similar considerations can be made about the momen-
tum P “ but now the term "P“,__ cancels, that is to say, in our
approximation, the all radiated “self-term” in the momen-
tum by the two interacting particles, is zero.

Probably we would have to go on with our expansion in
el uptoordern + m = 6toget ‘P, 0. In fact dipolar
radiation in conventional electrodynamics begins at sixth or-
der in the charges involved.

We end this paper by making some physical consider-
ations. First of all, we could recover the formal expansions in
the charges of this article by making the reasonable assump-
tion that the magnitudes we have calculated can be expanded
in powers of the dimensionless quantities e e, /c*m x
(x=3 — distance between the two charges). These are not
Lorentz scalar quantities. So, we cannot attach an invariant
meaning to the fact that these quantities were small in a
given inertial system. In spite of this, expansions in
e e, /c'm  x are meaningful since, because of the Poincaré
invariance, accelerations, momentum, etc., are always the
same functions of positions and velocities, no matter which

1314 J. Math. Phys., Vol. 20, No. 7, July 1979

inertial system we are talking about. Then each inertial ob-
server must only make sure that quantities e e, /c*m_ x are
small enough for him in order to get a fast convergence of the
expansions.

For electrons we have e ¢, /c*m_,x ~1 when x ~ 3 Fer-
mi. So we can see that e e, /c’m, x will be very small in all the
physical situations where the classical theory developed here
can be used.

In the case of the accelerations, where the terms *2¢ ¢
are known,* we can easily get the 3-accelerations
ul, =d?*x'/dt* up to third order in 1/c. (see, for instance,
Ref. 8 about the three-dimensional formalism of the PRM.)
From ("Dg e GDga oiven by (3.1), (3.14), respectively,
from *?£ 7 ¢ and making use of the relation’

wo=(1- Den,. - Lo, ] 6

(where V! is the 3-velocity of the particle @) we get to third
order in 1/¢

. £1€7 £1€ r-V, %\ .
i — n 12 N z[(—l‘sz,'—Vl'Vz—‘:s_( ))r,
mr’ cm LN 2 2 P

. el 2n eV
*na(l‘-V{,)V'] + N€1€3 4 N€1€2 ,
ccmm,rt cmm,yr’
. 2naeiea'r'v b znae%e% znaezea' i
emr 3cmm.r cmir
(5.30)
where we have put
Vi=Vi—V, r=x, V=(V.V)?, r=(r)"

and V.V, r-r are R * scalar products.

In (5.30), to zeroth order, we recognize, Coulomb’s law.
The second order is the correction of Darwin’s Lagrangian
to Coulomb’s law.” In the third we have two kind of terms:
Only those in e}¢,, come from the Dirac term in the
Lorentz-Dirac equation. We can think about it as a radiative
term. The other two terms in 1/¢* have nothing to do with
the Dirac term. They would be absent if we had taken time-
reversal potentials instead of the retarded ones that must be
used in the case of the Lorentz—Dirac equation.

Notice the fact that the term of !, in 1/¢? vanishes when
e/m, = e,/m,.
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We deal with a classical predictive mechanical system of two spinless charges where radiation is
considered and there are no external fields. The terms **'P,* of the expansion in the charges of the
Hamilton-Jacobi momenta are calculated. Using these, together with known previous results,
we can obtain the p‘, up to the fourth order. Then we have calculated the “radiated” energy and
the 3-momentum in a scattering process as functions of the impact parameter and the incident
energy for the former and 3-momentum for the latter. Scattering cross-sections are also
calculated. Good agreement with well known results, including those of quantum

electrodynamics, has been found.

INTRODUCTION

In this paper we pursue the calculations of the preced-
ing paper (I) (this issue) in order to obtain physical results
such as the cross sections and the “radiated” energy and 3-
momentum. [We explain what is to be considered as radiated
energy and 3-momentum in paper I (Sec. 5) and again at the
end of Sec. 3 in this paper.] We use the notation and general
scheme developed in Ref. 1, i.e., a classical predictive me-
chanical system consisting of two spinless charges, each one
moving in the field of the other according to the appropriate
Lorentz-Dirac equation.

Let us summarize the relevant results of (I): In a pertur-
bative scheme in the charges, e, , the 4-accelerations of the
“auxiliary dynamical system” (1.4.12) are determined up to
fourth order (included). [(1.4.12) means the formula (4.12)
of Ref. 1.] The terms "0 % and *?0 ¢ of the expansion are
the same as if radiation (that is, the Dirac term in the Lo-
rentz~Dirac equation) was not present and they were al-
ready known. The term """'8 “ can be found in Ref. 1. On the
other hand, the terms 2 %, of the original dynamical sys-
tem’s accelerations, can be found in Ref. 2. From them, the
terms 26 * are easily calculated. They are given in Appen-
dix B. The terms 8 ¢, calculated in (I), are new. The terms
99 = can be seen to be absent.

(eped

The Hamilton—-Jacobi coordinates p,45, can be com-
puted taking into account the 4-accelerations, 6 3, of “the

auxiliary dynamical system.” The first terms ("Dp?, (1:Dge,
in the expansions of p¢,§$ are obtained in Ref. 1. In (I) we

have obtained the terms *+'’p2, Vg% (the terms

(.3p (94 can be taken equal to zero). In order to have all

terms to fourth order in 5%,G%, the terms 2p%, 2§ should
also be calculated. Their calculation follows the same lines as
that of *1p, DG byt it is very cumbersome. Neverthe-
less if any more concrete results are to be obtained from our
mechanical system, knowledge of *?)p¢ is needed.

In Sec. 1 we will compute @?pZ and so we will get the

total 4-momentum, P* = p{ + p3, of the system to fourth
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order. In Sec. 2 the future (respectively past) infinite limit of
the calculated Hamilton-Jacobi momenta, p&, are calculat-
ed. In this way we can establish the 4-momentum balance of
the interaction and so, in our approximation. We see that
there is no energy and 3-momentum ‘“radiated”. In Sec. 3 we
use the asymptotic behavior of p& in order to calculate the
scattering cross section of the classical process, to sixth order
in e,, e,. In the limit where sixth order terms are negligible,
our results agree with the previous one of Bel® and they are
also shown to agree with those of quantum electrodynamics.

1. THE CALCULATION OF THE TERMS ?2p% IN
THE HAMILTON-JACOBI MOMENTA
EXPANSION

We start with the first equation in (1.4.6), written for the
“auxiliary dynamical system” (1.4.12),

d"’ll
2=0, (LD
ds,
where
d Ve, a
= =7° a4 . (1.2)
ds, x| og'

Fourth order terms of the form (2.2) (terms in e2e2) in (1.1)
give

2.2z 1,)za 0.0) za
Fpa pﬂ — —(]'1)0/]8( a . (Z'Z)BP pa’
P gxte " gmbe P Gte
(1.3)
or taking into account (1.4.18) and (1.5.6),
g
C? (L, Dza
205a (1,1 a 2.2
D, pr = _ (hge e 6281 (14)
that is,
a (1,Dza
D, (2,2)~aa = _(hge e __ (22)6;’ (1.5)
o
and
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2Dz (L) 8(1'1)":1’
Da' P = — 05——5‘7;;;—. (16)

Now, for "1V87 we get [see (1.3.7) and (1.4.13)]
77077(21’]-(-" ﬂ.czl’fa"";,

Lhgp _ _
g/a)_ F;‘: hP ;3 th, (17)
and from Ref. 1 one has for V52
- naig('}/ ~a>~ 775[ Y
Uhge _ 7o (7 @ pa . 9 ga 1.8
pa h2 A Fa A Z":a a ( )

where y stands for + 1 or — 1, according to whether we
want "5% to be zero at the future infinite or at the past
infinite. (When comparing with Ref. 1 attention must be
paid to the fact that there is a slight change of notation for the
symbol 7,.) It can readily be verified from (1.8) that

lim [”:k (,—V, - ﬁ)i{a_ f 73] =0. (1.9)
R\A AR,

Now, as we know, the symbol ~ in the notation k h,
A,...,etc., means that we refer to “the auxiliary dynamical
system” (1.4.12) and then we have the definitions (1.4.14),
(1.4.15),---, while &, A, A,--- refer to the definitions (I1.3.3),
(1.3.4),---. All through the rest of this article some very
lengthy expressions will appear, we will omit from now on
the symbol ~ when refering to “the auxiliary dynamical
system.” So we will write # %t %,z -, for l?“,?f,’,ia,---. Later
on we will have to work with the original dynamical system.
Then, symbols without a tilde will again have their original
meaning. This will be pointed out when necessary.

Z, Yo

Now let us come to Eq. (1.5) and (1.6), which we must
integrate in order to find *?5%. For this we first need to
compute 8% (352 /37%). Taking into account (1.7)
and (1.8) we find after some lengthy calculations (see Ap-
pendix A for details)

(nge 8“'”}“ _ 77077'5'/1 2Za {l . z_ll)
© g Rl \A 1,
T (2 k2
a a 7/ o
+ - 14, 1.10
r (ra A3 ) (1.19)
(L )za
(l.l)g,z/a a
P
oTaf Kz
= 2 Zethz, — wha O + A 2z,)
ry \hr,

— ke kz, = T2 + KR4 Atzz,)]

YAz, Tof o
+ )h “ + _( (kza - ﬁi’za')(kh : + A ZZaZar)
h? r r

2

(1.11)

k Yk?\, a
A 2ra(kza - 77'i'za’) + T)t a’
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that is, "V6£ (3 "VpZ/37) can be written in the form

a (1. Nza

g Fa _@yppa, Qe a
PR Na bk "+ TOCHE,

where the functions @b, and **C, are those appearing in

(1.10) and (1.11).

On the other hand, the terms ®*’¢ %in the accelerations
£ 9 of our predictive dynamical system can be found in Ref. 4
or, ina more compact writing, in Ref. 2. from *?¢ ¢ the term
229 can be calculated according to (1.4.13). It can be
found in Appendix B. Its expression has the form

na(Z,Z)aah a + (2‘2)[ °te

aa’t a»

@by (1.12)

eaga— (1.13)

with #2q_ @]  being the appropriate functions.
Finally, according to the notation of (I.5.3) we write
Cpe =1, CVTR T+ OV + VLt s (L14)

Now, putting (1.12), (1.13), (1.14), into (1.5), (1.6) and
keeping in mind (1.5.7), we have

2.2y _ 2,2) 2,2) 2.2)7+
Da a— ba - as Du aa
2,2 2.2)~ 2,2
= —f )Ca’ Da( ):uaa' = - )laa" (115)
2,2)5 __ 2,2) 2.2y
Da’ A, = — ba" Da‘( Maa = 0,

D,*Vg = —CIC . (1.16)

Here, Egs. (1.15) are equivalent to (1.5), and equations (1.16)
to (1.6)

Because of (I.5.11), taking 72,4 2,4 %z, as independent
variables, E gs. (1.15) and (1.16) can also be written
g@

@2
d a, _ —(2’2)[) —(2'2)(1 Haa
a a’
dz, dz,
@.2) 9 g 2.2
= —0YC, S e, (L17)
a
(2,2) 2,2)
a aﬂ . (2'2)b a aa _ 0
S8, T a7
a’ a’
9,
e (1.18)

We will use these equations to determine @?a, and
3 .0, while @, will be obtained from (1.4.19). Let us
begin with @Y. We will have

eI, = Jm (@b, 4+ *Pa )dz, + fm ( lim (2-2>ba,)dza,
z, z, 2, Y o0
(1.19)

and depending on whether wetakey = + lory= — 1 we
will have lim @Y, = 0 at the future or past infinite respec-
tively. In a similar way we have
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eng fm (2'2)laa,dza+fyw ( fim (2'2)Ca,)dza,.
Z, z, Z,—~¥ec
(1.20)

Taking into account (1.12) and (1.11), it is easy to see that

lim @2p =0, lim @?C, =0, (1.21)
Z, *yoc 2z Yo
so that (1.19) and (1.20) become:
@25, = | @b, + CPa)dz,, (122)
ang f " eor gy (1.23)

Now, as it can be seen in Appendix B, *?a,,*?[_ ., are
rather involved expressions. Consequently these integrals,
though expressible as elementary functions, are involved too.
The final result is:

(M)ﬁa
B Tk o
(kr, — Az )k 2r2 A zz) 2A %h?

QRk>—~AYr, + kA z,
k Zri — A ‘zfl

w2k — Az,
24°h7

-
_ T(ﬂzr + mkz, + Az) + e r3

a’a

X [kry + (2k? — A Dz, — 27%kz,] + —L—

Ah?

w w2 matk — Az ), + Az,
>< (——ﬂ + ) _ a a ]0 (rﬂ a)(ra + zﬂ )

re  ra) AW k— A

ik r,— Az, Tk + A
+ arctan

3 _ A
Az Tr
: T (arctan —2 4 arctan #"AZ“)
2AR° Ah kh

3 ek o,y Tl'a')’ (1.24)

4A h’ 4Ah° 4Ah°

7

Wiﬂ'i' 77121'/1 - Zkraza 4 ﬁfzkraza + k*h?

S k—a " k-
N Ty . 2wk 2mimakh?
A A, Ay
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kzkz, +ry)  z molkrg + kT — Az,
Ahrr, A,
kz, Tz, Az )k — A
_y Io (ra + Az, ).

A, A ey + Az,)

(1.25)

2,2)

Let us now calculate ““u .. Keeping fourth order

terms in (1.4.19) we obtain

2(2 2)paﬂ-a + . ” a & l)Paa - (126)
and from this equation and (1.5.3)
k 2 (1,1)(72 + ,”_20/1 2 (1, 1);72
Q2.2 a aa’
a 1.27
(7 e (1.27)
Then, because of (1.8), we find
T k: (72 1
2.2~ a a
e = 4 — . 1.28
o™ a2 " An ( A) (129

Finally, substitution of (1.28), (1.25), and (1.24) in (1.14)
gives us @252, Then from (1.4.18) and (1.5.14) we can write

- Na k Zq 73'
pPo=7+ elez[ (—- — —)h“ — t‘jv]

h? v, Ay,
+ 6’3@ [ . 277077%1’1( h a + 277’2’ZA ta,]
BRI 3wy "

+ e, CVah + OV ¢+ OVt §] (129

with @97 @25 and *?4, ., given by (1.24), (1.28), and
(1.25), respectlvely So we have calculated the Hamilton—Ja-
cobi momenta, p%, up to terms in e’ (# + m<4). Should we
need the total 4-momentum, P “, to this order, we only
would have to put P% = p¢ + 5¢.

In the next sections some approximated physical con-
clusions will be worked out from the expression (1.29). Actu-

ally, we will obtain the “radiated” energy, the 3-momentum,
and the scattering cross section.

2. THE “RADIATED” ENERGY AND 3-
MOMENTUM

The approximated Hamilton—Jacobi momenta, j7, giv-
en in (1.29) have been defined in such a way that the condi-
tionlim, , ., p5 = 75, issatisfied, as can be verified direct-
ly in (1.29). So, according to whether we take y = — 1 or
y = + 1, these approximated momenta reduce to the free
momenta 72, in the infinite past or infinite future, respective-
ly. Nevertheless, in the language of Ref. 1, these momenta,
<, are not conserved, that is, we do not recover the free
momenta, 7%, when taking the limit z,,z,— — y o as it also
can be seen from (1.29). Simllar considerations can be made
for the total 4-momentum, P* = pf + 5. Of course, P?%and
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also p2 are conserved numerically along a given pair of
trajectories.

So, let us take the limit z,,z,— — ¥ o0 in (1.29). Taking
into account (1.28), (1.25), and (1.24) we obtain

Pi .= lim pl=75+ee

ZipZyr — Voo

X( _ nayﬂ(E\ﬁ_ Tra’) i;’a _
2Ah°
2.1)

where we have restored the symbol ~ because this expres-
sion, as compared with (1.29), is a relatively short one.

By making the substitutions' 75—m_uj, we obtain
PS5 | _ .- Thisis analogous to (2.1), now refering to the origi-
nal dynamical system. That is,

PZ' — Yoo
_ . - o 21,7k . .,
:z\‘.z\,gnl Yoo Pa =ml; +ee A h*+ eie;
X(_ 7707/77(m,+m2)ha—_ 2k? t
2mlm2Ah3 maA 4h2 a

2k
—_tl).
+ m A h? a)

2.2)

Here k,A,-- are the quantities of the original system which
were given in (1.3.3), (I.3.5),and (1.3.8).

From (2.2) and the total 4-momentum, P“ = p} + p5,
we get in our approximation

Pl _, .= lim P%=muf+ mus.

ZpZ,— — Yoo
Then the “radiated” 4-momentum up to order eSe5 with
a + b < 6is zero. But the intrinsic angular momenta radiated
by the two charges is different from zero to order e e,
(1.5.27) due to the presence of the Dirac term.

We do not know presently if they are “radiation” due to
the retarded potential term (1.2.1), because we have not com-
puted the intrinsic angular momentum to order efe3. But, if
this contribution exists, it would not cancel the e ;. term
(except perhaps for equal charges).

Let us note that the first contribution to radiation
comes from the intrinsic angular momentum, Up to order
[ST.e:a:1][SI:e:b:2], a + b = 4, energy and momentum are
conserved, but not the intrinsic angular momentum which is
tranferred by the system to the universe (from the point of
view of the Wheeler~Feynman absorber’s theory).

3. SCATTERING CROSS SECTIONS

Let us consider (2.2) for ¥ = 1. Then since the Hamil-
ton—Jacobi momenta, p¢ are numerically conserved and

since for y = 1 we have lim, . . _p% = m,ug, we can estab-
lish the following equation,
1319 J. Math. Phys., Vol. 20, No. 7, July 1979

2y .k (M + m;,)
muZ + ee, —An;;—h"+efe§(— —u—l——f—h“

2mm,Ah’
%, 2k ,a)
mAhT* | mgAht °

3.1)

where symbols on the left side refer to the initial state and
those on the right side to the final state.

a
=myl,p,

From (3.1) and in the laboratory frame, v,. = 0, we ob-
tain the 3-vector equation

27,
m,¥.¥, + ¢e.e; Ez—h -+ E%e%

a

< naﬂ-(ml + mZ)h 2 mgy + m.y, - )
2m1m27/ava|h|3 mama'yavzhz ’

=mMyYarVar - (3'2)

From the identity 4 “u,, = 0, we have h.v, = 0 for
x?9 = x9. Then Eq. (3.2) is equivalent to the two equations

22 my + m.¥q

ma7/uva - 2eleZ T A, ma”aF vaF Cose, (3.3)
mama’7/avzh2

20€: _ 20 TOMAM) _ 0 e sing, (34)

v, |h 2mmyy o 0

where € is the sign of the product e,e, and 8 is the scattering
angle between v, and v,. From (3.3), (3.4) we have to
fourth order

2e06 ( __Tmee )
my [\ d4my,h|/

where m is the reduced mass: m=mm,/(m, + m,). Then

tanf = (3.5)

1 2my, erm vitand\ 2
L 1+ (1 === 7). (3.6)
(h| 7e.e, 2m
Here we want that lim,_,|h|™ = 0 and so only the solution
1 2my, ermpitanf\!?
— = 1—{1- — 3.7
(h| Te.e, 2m

must be retained.

Now the expansion in e,,e,,6, as a function of |h| and y,,
begins with e,e, as it can be seen from (3.5). Taking this into
account we can approximate (3.7) to get

W=
myy v,sind

re.e,

, 3.8
4my, (38)

where the term 2e,e,6/m v v2siné in fact beings with zero
order in e,e, because of the siné appearing in it. Only the
other term, me,e,/4my,, really behaves as an e e, term.

From (3.8) we can evaluate the scattering cross section
in the LAB frame, v, =0,

elel ( erm vlsin(6 /2)
do= 1—
4m2y2p3sin(6 /2) \ 4m

)dﬂ,
(3.9)

with df2 the differential solid angle. To lowest order, when
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[emm 2 sin(@ /2)]/4m <1, we obtain

where N, and P, mean the differential operators

2.2
eesd 2 — —
do = 3.10 N,=n" , Q=14 -
4m2y2vsin%(6 /2) 10 ar ar*
which is in fact the cross section that would have been ob- APPENDIX B
tained if we had neglected terms in e2e3 in (3.1). Writi
riting

Let us calculate the cross section (3.10) in the center of
mass system. This can be easily done by neglecting terms in
e2e3 in (3.1). We find

elelk 2dN
4m3y202A sin%(6 /2)
It can be seen that this expression agrees with Ref. 3. Asit is
noted there, (3.11) reduces to Rutherford’s formula in the

low energy limit and when one of the masses becomes infi-
nite it reduces to Mott’s formula for a spinless particle.

(2,2)611 =7 (2,2)a ho + (2.2)[ e
a a a

aa’t a's
we have for the functions *?a_ and *?_, the following
expressions (J. Martin, private communication):

d
7 (2‘2)au = - 7T¢217T:A 2rai z(ra - kza)(kra —A Zza)“z

(3.11)
TR — T

X {(kh _277-1177 2Zuza' + 772’/1 _Z)raT !

Now let us suppose that m, = m, and that after the
scattering we cannot distinguish between the two particles.
From (3.11) we then find for the scattering cross section

eiex2ye — 1y

m2vtySsin‘

- [kh _Z(ﬁﬁi')ﬂza(kza - ra) + 7T¢21’A _2]

X Trt?;'(kra —A Zza)?l }

do = (3.12)

2 -3 -2 ER ¢
Akhiezer and Berestetskii, in “Quantum Electrodynamics,” +ImkA ( — A ke, = Tz
p. 838, give (in our notation) to lowest order
2,2 2 2
o — elez(zﬁ‘l){ .2 B Yi_l)d{) (.13)
amiiyh \sw6 221
for the scattering of two indistinguishable spinless particles
in the center of mass system. This formula does not depend
on Planck’s constant. In (3.13) the expression
|2 — 1)/(272 — 1)| is always less than 1. Then we have
2/5in’0> (3% — 1/2)(29? — 1) and (3.13) reduces to (3.12).
So, in the appropriate limit, our results agree with those of
quantum electrodynamics, at least as far as (3.13) is
concerned.

Az r
+ A2 (kr, — AZ) + 72A Clog ——2 AL
Az, +r,

k—A
+ m2.A “log ———),
)
(2,2)1(“1, - 772772'/1 Zra\ l(kra —A zza)_3 - 317’5772’](}1 Zzaru\ ’
X { [kh 7277(7 zzuzu' + ﬂ%'A -Z]ra"' !
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+ A 2 mtkr, — Az)"

APPENDIX A

The calculation of ("""82.(3"V5%/37"*) becomes easier
by systematically using the following relations (J. Martin,
private communication):

- GAE R

X { - A «2(kza - ﬂi'za')ra'ﬁ :

+ A 2rlrkr, — Az,)!
NA“= =2~ AR, ( )

a_ e Az, +r, —
Natu T]ujlelh ’ 4+ 1TirA _310g + ﬂi‘A -3 log k A ]
Na[ :’ = na'kh (1’ AZH/ + Fa a
Nz,=mhA? Nz, =kh'A",

Nh?= —2hz, Nhk=Nm.=0,

Qh“=0, Q= —kii, Qti= —mts—2ktg,

'L. Bel and J. Martin, Ann. Inst. H. Poincaré 22, 173 (1975).

2. Bel, “Journées relativistes de Toulouse,” Université de Toulouse (1974).
*L. Bel, Contribution to Differential Geometry and Relativity, edited by Co-
hen and Flato (Reidel, Dordrecht, Holland, 1976).

‘A Salas and J.M. Sanchez, Nuovo Cimento B 20, 209 (1974).

Qrfza = kza’ Qaza’ = ﬁzazu’
Qak: _A 2’ Qahz:Qaﬂlz)ZO’
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An arbitrary electromagnetic perturbation of a general solution of the relativistic
Vlasov-Maxwell equations is considered. The nonlinear current responses are expressed
in a form which in particular is an all order manifestation of the Manley-Rowe
relations. A coordinate free formalism is used, starting with a representation of
Minkowski space in terms of abstract linear algebra, and all formulas are intrinsically
covariant. In the method used to derive the current responses the perturbation of
particle orbits rather than of distribution functions is calculated.

1. INTRODUCTION

Consider an electromagnetic perturbation of an arbi-
trary solution to the (relativistic) Vlasov—Maxwell equa-
tions. We denote the change in the electromagnetic 4-poten-
tial by ¢ and in the plasma 4-current by 8/ [¢ ]. Here 6/ is a
nonlinear function of ¢, and if ¢ is sufficiently small we may
obtain 6/ [¢ ] as an expansion

SJgl=6/"[p]+J P [B]+ (1.0
where 87 ‘1 is linear and 8J ", for n»2, nonlinear of order n
in ¢. In this paper formulas for 8J ®[¢ ] are derived for all
n>2. The results are formally valid for a relativistic multi-
component space-time dependent plasma in an arbitrary ex-
ternal electromagnetic field.

One would like the general formulas for the nonlinear
currents to:

(a) Provide useful formulas for different particular situ-
ations of interest,

(b) Exhibit structure and symmetry properties.

The only way to discover how well the formulas in this
paper satisfy property (a) is to actually work them out for
different particular cases. For a homogeneous magnetized
plasma this has been done' and relativistic wave coupling
coefficients of arbitrary order may be obtained in forms
which generalize the result in Ref. 2 (where the 3-wave cou-
pling coefficients for a nonrelativistic plasma are given as a
series containing Bessel functions, just as in the standard
expression for the linear conductivity tensor). Concerning
(b) our formulas show an expected approximate symmetry
which is an all order manifestation of the Manley—Rowe re-
lations.? Structure and symmetry properties are discussed in
Sec. 5.

The method of derivation used in this paper is “‘the
dual” of the standard method; the perturbed motions of the
particles are calculated instead of the perturbation in the
distribution function. Thus instead of the Vlasov equations
we use the equivalent system of equations given in Lemma
2(a), Sec. 4. It is demonstrated how to obtain general formu-
las with satisfactory symmetry properties from this starting
point, and the final form obtained for 87 (¢ ] indicates

1321 J. Math. Phys. 20(7), July 1979

0022-2488/79/071321-10$01.00

why these results probably would be much more difficult to
derive by the usual method where one iterates the Vlasov
equation (see Sec. 5).

The generality of the formulas in this paper causes nota-
tional problems; the standard notation of index calculus nor-
mally used in special relativity has turned out to be embar-
rassingly tedious to use in the derivations and also clearly
unsuitable if we want to write transparent formulas. There-
fore, a coordinate-free system of notation has been used and
this is advantageous from at least three points of view, firstly
we get rid of indices, secondly the coordinate-free approach
is much more readily capable of geometric interpretations,
and thirdly the formulas are intrinsically covariant. The
mathematics of coordinate-free analysis may be found in
books on differential geometry but these are in general un-
necessarily advanced for our needs. In Ref. 4 the coordinate-
free approach to special relativity and Maxwell’s equation is
discussed, and this is the best reference for us. However,
since we are doing kinetic and not gravitation theory, it will
be practical for us to use a slightly different notation which is
closer to standard advanced calculus. Unfortunately, there
is no reference quite suitable for us and this is why Sec. 2 is
somewhat long. The reader not familiar with the method of
coordinate-free analysis is advised to study Chapters 2, 3,
and 4 in Ref. 4 before reading Sec. 2 of this paper.

The coordinate-free language is introduced in Sec. 2. In
Sec. 3 the main results of this paper are formulated, in Sec. 4
the derivations are given, and in Sec. 5 we discuss the results.

2. COORDINATE-FREE NOTATION AND
SPECIAL RELATIVITY

A. General remarks and our conventions
concerning units and boid face letters

In subsection B below we give in (i)—(v) the same ab-
stract description of the Minkowski space as in Ref. 5, with
the only difference that we state the orientation in space and
time more explicitly with (iv) and (v). For such a space there
is a well developed coordinate-free calculus® and this is a
suitable starting point for us. In Sec. 2 B we also give the
relationship between this algebraic description and the stan-
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dard one on R *. The scalar product given in (iii) induces
natural measures on 1, 2, 3, and 4-surfaces and also certain
operations on the tensor spaces (for the definition of these
spaces, see Ref. 4) defined in (2.3)(2.8). We define the gradi-
ent operators (2.12)—(2.14) and here we may note some dif-
ferences as compared with Ref. 4. We make use of the scalar
product in the definition of the gradients and these operators
appear much like vectors in our description [(u-V;)T

= u-(V T ) for us, compare with (3.39), p. 82 in Ref. 4]. The
form of coordinate-free calculus used in this paper is closer
to standard advanced calculus: We identify the dual space
V * with our vector space ¥ and make no further use of it, the
gradient operators behave as vectors and we have the famil-
iar form of the Taylor expansion (2.19).

Unit convention: It will be convenient not to associate
any units with our abstract spaces. In order to achieve this
formally the formulas and equations in this paper only con-
cern the numerical parts of the physical quantities expressed
in MKSA units. Thus, the velocity of light is ¢ meter/second,
the particle rest mass and charge (with particle specie index
omitted) m, kg and g coulomb, the electromagnetic field ten-
sor is F volt/meter, the 4-potential @ volt, and the 4-current
J ampere/second-meter?.

The use of bold face letters: Bold face letters will be used
only when a particular Lorentz system has been chosen in
order to simplify the transition from coordinate-free formal-
ism to conventional “space-plus—time” statements. Our con-
vention is understood from (2.9) and (2.26)-(2.30).

B. The Minkowski space of special relativity
We are given (E,V,.,S,V " *) such that
(i) E is a four-dimensional real affine space,’

(ii) V is the four-dimensional real vector space of trans-
lations belonging to the affine space E,

(ii1) (-) denotes a symmetric bilinear form, which we will
call the “scalar product” on ¥, with positive index of inertia
3 and negative index 1. We write x-yeR for the scalar product
of x,yeV.

(iv) S is (a choice of ) one of the two components (i.e.,
maximal connected subsets) in the set fueV |uu = — 1}

(v) ¥ "\*is one of the two components in ¥ "*\ {0},
where ¥ "# is the set of alternating tensors of order 4 (see
subsection C below).

We interpret E as the set of events and S the set of 4-
velocities, i.e., unit vectors in the future direction. Thus (iv)
gives us an orientation in time and the orientation in space is
defined from (iv) and (v): Three spacelike linearly indepen-
dent vectors v,, vs, v, (spacelike means v v, > 0) are positively
oriented iff u Av, Av, Av,eV /%, where u is the (unique) ele-
ment in S determined by u-v;=0fori= 1,2, and 3. If we
only make use of the structure given in (i)—(v) and avoid
using any particular coordinate systems we will automatical-
ly obtain coordinate free, and thus intrinsically covariant,
formulas. Contact with standard index notation is obtained
by the (proper) Lorentz (coordinate) systems. Such a system
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is defined by a choice of origin OcE together with four vec-
tors (eq,e,,¢,,e;) such that

levej| =8
and

ecS and e, AeAe;NeeV ™.

A Lorentz system L defines bijections
L,:V—>R* and Lg:E—R*‘by

L,0)=() iff y=3 ye,

L(P)=@) iff P=0 + ¥ xb,

where (') and (x’) are the index notations for y and P. If L
and K are two Lorentz systems, then the composed mapping
KoL ' is a Poincaré transformation with the Lorentz
transformation K ,°L - ! as its homogeneous part.

C. Calculus on Minkowski space

Tensor spaces may be constructed from the vector
space ¥ and they will inherit some structure from the scalar
product. We may identify ¥ with its dual space V' * by asso-
ciating with each ve¥V the mapping v: V—R defined by
v(w) = v-w, thus nothing is gained by also using »"* in build-
ing tensor spaces. Accordingly we consider only the tensor
spaces V" ®” and their subspaces of n-vectors (i.e., alternating
tensors) V' 7. A base {e,e,,e,¢:} of Vinduces the base

{e,®®e, |0<i<3, 1<k<n} 2.1
of ¥ " and the base
{e, N Ne; 10y < - <0,<3,} 2.2)

of ¥ " The dimensions of ¥ ®" and V "" are 4" and (}),
respectively. The space ¥ " is nontrivial only for
ne{0,1,2,3,4} and by definition ¥ *° =V "°=Rand V ='
= V! = V. The scalar product on ¥ induces the mapping
(*)and ¢ , ) such that

Ky :veixy ey etsm =2 for Imzk>1,
L,y VAMX YA LR for m>1,
defined by

(2.3)
(2.4)

ne-ev,Mwe-ow,

:( ﬁ b k+‘;.w"‘)v]®-"®vlak®wk+1@"'®w”1
- 2.5)
and
(A Av, i A Aw,,)

m?

= —1‘— ne--eu,(Mw e -w,. 2.6)

m!

We use the notation - for (), and : for (°). The operator
{ , Yisascalar product on ¥ " such that the base (2.2) for
¥ ~™ is orthonormal if {eoe,,e;e,} is orthonormal, i.e., if
leqe;l = &, It may be shown that

W Ao AV, A A, ) = det(vw) Q2.7
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and this is the scalar product used in Ref. 8.

Given a 2-surface 2 in E we define its area 4 (X') as

A= L | (72,8 ) N yi(s,t),vi(s,t Y Ayis,t )y | 2ds dt,
(2.8)

where the mapping y: R 2D {2—E is a parametrization of 2.
It is a standard result of advanced calculus that this area is
independent of the particular parametrization if we only
consider sufficiently well behaved parametrizations. It is
straightforward to generalize (2.8) and obtain natural
length, area, and volume measures on 1, 2, 3, or 4-surfaces in
EorVv.

Example: S has the parametrization y: R *—~V, where
2.9

where #° = (1 + u-u)'”? and where ¢,, e,, e,, ¢, belongs to a
Lorentz frame and u = (#',u%u?). We have

y(u) = ue, + u'e, + u'e, + e,

—a—y, = u—eo—i—e, for i=1,2,3
aul uO
and thus

172
|<£l AV A9y Gy, Oy /\ﬂ> du'dudu’
du' du?

A’ u du*  ouw’
det( — '/ (u’)? 4 5, teic3 2du' dudu’
1<j<3

i

(2.10)

i

-l—du‘ du? du’.
uO

Thus

fg(u) du = J g9 v (W) = du' du? duw
s R u°

for a function g: S—R. In the same way we obtain for 4
:E—>R,

fh(P)dP: JhOLgl(xf)dxodx‘ dx*dx®, (2.11)
E E

where L;: E-—»R * is a map belonging to a Lorentz system as
in Section B above. It is practical to write g(u) for g © ¥ (u)
and & (x') for hoL - '(x9).

We now define the operators Vi, Vy, and Vg by
(@) Let T: E—V ®* then V.T: E—V®%+ Y such that

|T(P)— T (Po) — (P — P)-VT(P)|| = o(||P — Py|)).
2.12)

(b) Let T: V-V ¢* then V,T: V—V ®*+ Dgych that

170) — T (o) — ¢ — po)- VYT = o(|ly — vol)-
(2.13)

(c) Let T S—¥ =*, then V T: S—V*®&+ D gych that

|7 () — T (uo) — (0 — 1o)-VsT(uo)|| = o(JJu — w,)).
(2.14)

and 4, VT (u,) = 0.

In (a), (b), and (¢) || || denotes some norm on the rel-
evant vector space. The definitions do not depend on the
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particular norms chosen since all norms on a finite-dimen-
sional vector space are equivalent.’ In the right-hand side of
(2.12)—(2.14) 0 has the property lim, 4[o(t)/t]=0.

In a Lorentz system L we obtain from (a), (b), and (c¢):

3 N
Vim —a-L + 3 oS, where Ly(P) = ()15

ox° i=1 8x"
a 3 ;
Vp= —eg— + e;—, where L, (y) = (), (2.16)
ayo & ay:
V 3 a 3 X a h i .
= e,— +u u'—, where u= u'e,
s i;l ou' ig1 au' ey

.17

Example: Let 7 be as in (a) above. Express 7 in the
systemLasT=2,,T, A, whereT :R*‘->Rand{/,|acT |
is the base of ¥ ©* obtained as in (2.1). Then

d
VETZ — Z(@Ta)e()@/{a

ael

LD
+ Z 2 (ETa)e,tS/la.

aeli=1

(2.18)

For ¢: E—V we define the four-dimensional curl operator
VA =Ved — (V. é)', where  means (vow) = wev.
We will also need the Taylor expansion of a function 4:
ExXV-spye® k,

h(Py+ Axpo+ 4p) = 3 i' (Ax-Vg + Ay V)"

n=0 M
X h (Po,yo) (2.19)
which is a practical but formal notation for
h (P, + Ax,p, + 4y)
5 i)
— e A ®m A ® (1 m)
HE::O n! m ¥ ® d
n
X ( _ )Vg‘V{? “™h(P,y)| (p.y.- (2.20)

D. The Viasov and Maxwell equations

The electromagnetic field tensor F and 4-current J are
mappings F: E—V "?and J: E—V. The Maxwell’s equations
are given by

1/2
VE.F:(&)/J,
€o

V. F=0, (2.22)

where * is the Hodge star operator defined in Ref. 8. We will
in this paper assume the existence of a four-potential @:
E—Vsuchthat — VA @ = F. Thisis a natural assumption
in a Vlasov plasma where discrete particle effects are
neglected.

Let /i E X.S—R be the distribution function of some
particle species in the plasma with charge g and rest mass m,.
The Vlasov equation for f may be written

Df=0

where the Vlasov operator is

(2.21)

(2.23)
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D=uVy+ (v APw)Vs (2.24)
mec
The electromagnetic wave equation
172
- ( Ko ) J, (2.25)
€

where 0@ = V(VzA @), together with the Vlasov equa-
tion for all particle species constitutes, if the eventual exter-
nal 4-current is known, a closed system of equations.

In a Lorentz system L we keep the standard notation for
electric and magnetic field E and B, the ordinary current
density J, the scalar and vector potentials U and A, and the
charge density p. We have:

F=EAe, + ' (BAey), (2.26)
"F="(EAe) — cBAe, 2.27)
@ = Ue, + cA, (2.28)
J = cpe, + 4, (2.29)

and the operators

D= i w2 4 9 (E +cuxB)y 2 (230
o oOxt! moc? du
and
i s &> &
- Xy + A(x'y? + A(x?)? + Ay - (23D
Substitution of (2.26)—~(2.27) in (2.21)—(2.22) yields the
“space-plus-time” form of Maxwells equations. If we use

Ve (BAe) =curl B, (2.32)

VeBAe)= —c g—t B + (div B)e,, (2.33)
and the corresponding relation for E. The Lorentz condition
V@ = 0is only used in the derivation of (2.31).

3. THE MAIN RESULTS

The plasma is described by the relativistic Vlasov equa-
tion (2.23) and the electromagnetic wave equation (2.25).
The unperturbed plasma state may be inhomogeneous non-
stationary and space-time dependent external electromag-
netic fields may be present. The state is determined by the
distribution functions f§: E X S—V, for all particle species o,
and the 4-potential @,: E—~V. Here &, satisfies the electro-
magnetic wave equation with plasma and external 4-cur-
rents included.

Omission of index o: For notational reason we will fre-
quently omit the particle species index o and also summa-
tions over ¢. It is an easy task to fill in the missing o and X .

“Space-plus—time” statements: A statement involving
space or time separately without reference to any Lorentz
frame means that there exists a Lorentz frame such that the
statement is true.

Formal calculations: The results formulated in this sec-
tion are obtained by formal calculations and their domain of
validity are undetermined. Thus we must not take the rather
formal way of presentation too seriously, the use of a math-
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ematical terminology clarifies the structure of the content
but we prove no mathematically rigorous results (see howev-
er remark 2 below).

Definition 1: L(E,V') and L °(E,V") are spaces of func-
tions from E to ¥ such that

(i) peL(E,V )=¢—0 uniformly sufficiently fast to-
wards the past,

(ii) gL °(E,V )=>¢—0 uniformly sufficiently fast to-
wards the future.

Remark 1: Towards the limit of the infinite past we
want the perturbed system to approach the unperturbed one
(see Definition 4 and Lemma 1). This is why the function in
L(E,V)have to vanish sufficiently fast towards the past. For
mathematical reasons it is convenient to allow perturbations
which do not vanish exactly prior to any finite time. It is for
example sometimes suitable to calculate the response of a
perturbation which exponentially approaches zero towards
the past."

Definition2:For ¢, é,,....4,,€L(E,V)yandm = 1,2,-.- we
define

(1) 6J [¢ ]: E—~Visthe change in plasma 4-current due to
the perturbation ¢ of the 4-potential,

(i1)8J "¢ )isdefined from theexpansion(1.1)of 6/ [¢ ],
(iii) 7 “[,,...,4,,] is determined by
(a) it is linear in each variable ¢,

(b) it is symmetric with respect to permutations of its m
arguments ¢,

© 8By ] =T (@i b= =6, =90
Definition 3: Some set-theoretic notations will be used.
() N=1{01,.}, N,,={0,1,...m}, N*={1,2,...},
N ={12,..m};
(ii) Let B, C, and D denote finite sets:
P(B) = {all partitions of B }
= {I"| I"is a set of disjoint nonempty subsets in B,

such that u C=B},
Cel”

n(B) = number of elements in B,

|| =maxn(B) and I'!= [ZpernB)]!
per Mg [n(B)]
for I'eP(B).

We will use upper and lower indices and a second set in
the argument, in any combination, to denote certain subsets
of P(B)

PL(B,C)= {[eP(B) | n(I")>k, || <l,Cel" }.
Thus in (3.1)-(3.2)
PY(N,)=(leP(N,) | n(I")>3, | | <},

(iii)) If I'eP (B)and keBand {k }el, thenI" \ |k }isde-
noted (I" |\ |k ). In general we use the notation
(@|B |-+18 |\|y|-|@), where in the place of a letter we have
one or several elements of N or one finite subset of V or some
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partition of a finite subset of ¥. The definition is understood
from an example:

def

(B| T\ I |12 |\ | T |3) = (Buluro({1,2})

NASIERIEE

where I, are partitions of some subsets in ¥ and BCN.

Result1:Taked,,....4,,€L(E,V),and L °(E, V). Then

fE 5P YST (G 1(P) AP

AD), for m=2I, (.1
_ reP(N.)
LY AT+ 3 AT, for m=2+1, 32)
rel, reP(N,)

for/ = 1,2, and I, = P '(W, )\P(X,,). Here m>2 and
the m = 1 use is treated in (3.14) part I1. We define

AT) = 3 gelm + DU L Sﬁ(ﬂu)[A(F)(abo(P)

Wt 3 ACNOGPID| P ()

fklel”
and {if we use formal notations analogous with (2.19)]

ANy = [] [5xB)V .+ 6u(B)V, ],

Bel”
where 8x(B) and du(B) are functions from £ XS to ¥ and
determined from the hierachy of equations

Dbx(B) = Su(B),

(3.4)

(3.5)

Dbu(B) = gmy 'c? y !)“[ ANV Pyu)

IeP(B)
+ > A NNV ¢k~u)}, (3.6)
fkielr
together with the boundary conditions:
6x(B ), u(B )—0 towards the past if O¢B, 3.7
6x(B ), Su(B )—0 towards the future if OcB. 3.8)

Remark 2: In Result 1 the conditions we may impose on
@;fori>11in a meaningful way is restricted by the fact that we
are interested in 8J “™[¢ ] for solving the electromagnetic
wave equation selfconsistently for ¢. Thus ¢ is somewhat out
of our control and it is for ¢, = - = ¢, = ¢ that
87 (@,,....4,,] has a physical interpretation. On the other
hand, the choice of ¢, is ours and we may rather freely im-
pose conditions on ¢, to compensate for bad behavior in ¢,
7> 1. In fact we may use @, much as a test function in distribu-
tion theory and, just as in that theory, formal calculations on
even badly behaving functions may turn out to be justified
when we consider integrated quantities like (3.1).
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Remark 3: The restriction ¢.eL °(E, V') is made to make
it probable that ¢o(P)-8J "™[,,...,4,.1(P) approaches zero
in all directions (we consider the plasma to be spatially finite
at finite times) so that we may integrate this quantity over £
and so that surface contributions vanish when we perfrom
partial integrations (cf. Lemma 6 in Sec. 4).

Definition 4: For ¢, ¢,,...9,,€L °(E, V') we define

(i) 6x[¢ ]and Su[é ] such that they describe the changein
the particles positions in £ X .S'due to the perturbation ¢ such
that given the orbit (P (s),u(s)), where s/c denotes proper
time, of a plasma particle in the unperturbed plasma the
orbit of this particle in the presence of the perturbation ¢
would be (P (s) + 5x[¢ 1(P (5),u(s)), u(s)

+ Suld J(P (s),u(s))), where s/c still denotes proper time.

(i) 5x™[¢ 1, 5u'™[¢ ] are defined from the expansion of
&x[¢ ] and Sulé ] analogous to (ii) in Definition 2.

(iii) 5x"[ @,....4,, ] and Su[,....d,,] are deter-
mined by

(a) They are linear in each variable ¢,

(b) They are symmetric with respect to permuations of
their m arguments ¢,

(©) 8x"[¢y,...8,,] =6x"[4] and
S [ Gy, ] = SU™ (G ]if Gy = =, = .

Result2: Let ¢, 5x(B ), and Su(B ) be as in Result 1 and
0éB = {i(1),...,i(m)} and m = n(B), then

8X(B) = X[, 10 oBiom ] (3.9)

Su(B) = 8" (B sBicom ] (3.10)

Corollary 1:If ¢, &,,...,8,,€L(EVINL °(E, V) and if
O6x(B ),6u(B )—0 both towards the past and the future, the
quantity

f Bo(P)-8T [y, (P dP (3.1)
E xS

is symmetric with respect to permutations of ¢, ¢,,...,8,,,.

Proof: 1t is only (3.7), (3.8), and the requirement that
oL °(E, V') while other g €L (E, V') that makes our expres-
sion for (3.11) in Result 1 not symmetric in general. These
asymmetries are eliminated by the assumptions in Corollary
1.

Remark 4: In Result 1 we consider é,,...,4,, as given in
order to simplify notation. However, we are in reality inter-
ested in varying these functions and we will now introduce
some more operator minded notations.

Definition 5: We define on operators 4,, and 4;:
LYAEVYX(LAEV))* "R forjeT, [see Definition 6(a) be-

low] and a subset T5(m) of T, :
(i) Ti(m) = {jeT,,| 2= j(i)>3 and j(}) = Ofori>1},

(i) A(doy-sd,,) = Zp;, ~ ;4 ("), where j-is defined in
4.16),

(iii) 4,,(Bor--8) = S (P )T [$1,....6,,1(P) dP.
Remark 5: In (it) above we add all 4 (") for all I having
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a particular structure. (With the structure of I' we mean the
information of how many sets in I" have one element, two
elements, and so on. The structure of I is determined by the
function j- where j - () is the number of sets in I" with i
elements.) It is easy to see that 4, (jeT,,) is symmetric with
respect to permutation of its last m variables, and linear in
each variable.

Corollary 2.
4, for m =2/,
T (m
Am _ JjeT(m)
i 2 A+ z A4, for m=2+1,
jei(L,) JeT\om)

where j(I,,) = TL" {(m)\T(m) and [ = 1,2,--.

Corollary 3: If ¢o, Prye- @ €L E,VINL (E,V ) and if
5x(B ),6u(B y—0both towards the past and the future, then 4 ;
(dor....,d,,) is symmetric with respect to permutation of

Goyeres® e
Proof of Corollary 3: The same as for Corollary 1.

4. DERIVATION OF THE RESULTS

The unperturbed plasma (f;,®,) and ¢,...,d,, are taken
as in Result 1. We consider ¢eL(E, V') as given. The Vlasov
equation for the unperturbed plasma is D, f, = 0.

Lemma 1: The transformation of £ X .S defined by
(P,u)—(P + 6x[¢ J(P,u),u + Sulé I(P,u)) is measure
preserving.

Proof: A 4-potential @: E—»V determines a one param-
eter group of transformations Y [P }: E X S—E X S by the
vector field v[@ |: E X S—¥ X V defined as

v[<p](P,u)=(u, 4 VE/\cb(P)-u).

mc?

Take (P (s),u(s)) = Y ]® }(P,u), then (P (s),u(s)) is the pathof
a plasma particle in E % S, where s/c is the lapse of proper
time and (P (0),u(0)) = (P,u). Since (P + 5x[¢ [(P,u),u

+ Suld J(Pw)) =lim,___ Y [P:+ ¢ 1oY _ [P NP W), itis
sufficient to prove that 7,[® ] is measure preserving for all s.
Take a Lorentz frame L. Then with notation introduced in
Sec. 2, themap L X L - E X S—R " is seen to transform our
problem on E S into the following on R : Prove that the
flow w: R "—R 7 defined by

w((x),u) = (u, 9

mec?

(«’E + uxB))

preserves the measure (u°)'dx® dx' dx? dx’ du' du* du’. A
sufficient condition for this is div[(#°)'w] = 0, where div is
the seven-dimensional divergence. We obtain by straightfor-
ward computation

29 () uxB) =0,
mye? du
Lemma 2: (a) The function 6x[¢ ] and Sul¢ | are deter-
mined from

Dodx[¢ J(P,u) = bulé J(P.w), 4.0

divi(u®)'w] =

1326 J. Math. Phys., Vol. 20, No. 7, July 1979

DSulp J(Pu) = ;f,z‘ (VeA(@o+ )] p s oncpult

4+ 8ulg 1(Pu)) — Vo ADy(P)ul,
(4.2)

with the boundary condition x{¢ ] and du{¢ -0 towards
the past.

®) L (P )5T (6 1(P) dP

=gc J [#o(P + 8x(P,u))-(u + Su(P,u)) — d(P)-u)
E xS

XSo(Puw)ydP du. 4.3)

Proof: Part (a) follows straightforwardly from the defi-
nition of 5x{¢ ] and Sul¢ 1. Part (b) follows from the equality

f do(P)-uf (Pu) dP du
E xS

= J PP + Sx(Pu))(u + Su(Pu))fo(Pe) dP du.
F
(4.4)
Ta prove (4.4) we make the variable substitution
(P,u)—(P + 6x(P,u),u + Su(P,u)) in the left-hand side and
make use of Lemma 1 and
Sl Pu) = f(P + 8x(Pu)u + Su(Pu)). 4.3)
The relation (4.5) is a consequence of the Viasov equation.
Definition 6:

@T, = L/ | j: N*—N and i ij(i) = m} for meN,

=1
O A = ] 6x[1Ve+ 6u®(4 195"
i=1

forjeT, and meN. Note that 4 (/) is the identity operator for
jeTo;

©n= 1] UG for jeT,.

fer ]

Lemma 3: (2) The functions 8x™{¢ ] and Su'™{¢ | are

determined from

DSx" [ ] =6u"{d ], (4.6)

DHu$] = =Lt T (A (HVAPyu)

o€ L jeT,,

+ O3 NAGEAeD] @

j& T.“ 3

with the boundary conditions dx[é ] and Su[¢ | -0 towards
the past.

) Lm(maﬂm)w 1Py dP

=gc Y (N S84 (N SLP )-u) dP du. (4.8)
T, E xS
Proof: Taylor expansion of the right-hand sides in (a)
and (b) Lemma 2 yields
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Diulp] = ——

| $ L Ox181V: +8ul6 19, s A &)

m=1
© 3 L x[41V,+ 5ulg 1V, )T Agw)| (49
m=0 m'-

and

L 8(P)5J [4 1(P) dP

—gc|  f@w S (m)
E xS

m=1

X Ox[ 1V, + 6uld 1.V,)"(u-ds) dPdu.  (4.10)

We here regard u-¢o(P) as a function on £ X ¥ (not only on
E % S) and accordingly V, (u-¢,) = ¢,. We substitute
(67 [61,6x[81.6ulp D) = =57 _ (8 ™[ 1,6x [ 1,6u[ 1)

and get equations for each order of nonlinearity.

We obtain for example: Terms nonlinear of order m in
SEo kD [ZEl (0 [ 1.V + 6u-V,,)]* sum up to

S [T G161V, +6uP(419,)°,  (@4.11)

T, =1
where thus (/) is the number of (5x®[¢ 1.V
+ 6u'?{¢ ]-V,) factors in a term and =2 jj(i) = m is the
order. It is an easy combinatorial problem to find the factor
() in (4.11).

Proof of Result 2: We define and 62*)[ ¢, ,...,d, |
= 6x(B)and5a*’[@,,...,8, | = Su(B),where B = (i,...,i; |
and 0 < i, <-- < i,. It is easy to see that 5%’ and 8%’ is
linear in each variable and symmetric, and if we also prove
that

S5x*[p ] = 675% [ ] d:er 5% ,....0 1 (k times &),
4.12)

Su®[¢] =8a%[¢ ] = 8% ¢,...0 ] (k times @),
(4.13)

it follows from (iii) in Definition 4 that the ~ (overtilde) may
be removed without changing the functions and thus Result
2 follows.

We first prove, with the obvious definition of 4 ( /), that
¢ = = ¢, = ¢ implies:

> )= WA (4.14)
TeP(N, ) /T,
and
SUENAT N k)= T (N4, (4.15)
7.k JeT,,

where 2, - the sum is taken over all k, I" such that keN
and {k {el'eP(N }).

We use the variable substitution P(N ,})> I'—j- €T,
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in the left-hand side of (4.14) where

Jjr() =n{Bel | n(B) = i}. (4.16)
This substitution make sense since 4 (I") and I"! may be ex-
pressed in terms of j < A (I") = A(j-) and
I =m 2 (MjH]". In this way we obtain

Yy yad)= z (mh)? ﬁ(ﬂ)}(n

reP(N,)) = i=1 )
Xn{leP(N 5 |jir=714 Gr).
“4.17

The number n{I'eP(N ;) | j~=]} is calculated by count-
ing the number of ways we may construct I" for a given j by
the following procedure:

(1) Divide N} in disjoint sets B, such that N
=V ,B, and n(B) = ij(i).

(2) Divide each B, in (/) subsets with / elements in each.

If the subsets in (2) are used as the elements of I', then -

= /. The number of ways of performing (1) and (2), respec-
tively is

=" N5 )

om B[N K )] o
and we have

el ) —1

n{leP(N ;) |jr=j} =nen, = m![ﬂ H (ﬂ.)"’)] .
f=1
(4.20)

Substitutions of (4.20) in (4.17) yields (4.14). We obtain
(4.15)from (4.14)and (" | \ | k) = m>*I"!From (4.14) and
(4.15) we now see that (3.5) and (3.6) becomes exactly the
same equations for X% [¢ 1and 5[4 ] as (4.6) and (4.7) are

for 5x*[¢ ] and 5u*[¢ ] and thus (4.12) and (4.13) are true
and so Result 2 follows.

(4.18)

Lemma 4:

L¢°(P)'6J(m)[¢l!"'?¢m](P) dr

—¢c 3

reP(N )

@y JE . FP)A (Nu-¢o(P) dP du.

(4.21)

Proof: 1t is sufficient to prove that (4.21) is consistent
with (iii) in Definition 2. Here (a) and (b) are easily checked
and (c) follows from (4.14) substituted in 4.21 when
¢ = - = ¢,, = ¢ and comparison with (4.8), remembering
that 4 () = 4 () as proved above.

Lemma 5: Let B and C be two nonempty finite and
disjoint subsets of N and I'eP (C), then

(2) 4 (B)g-u) = 6x(B)V A p-u+ Do[6x(B)-¢ ],

(4.22)

(b)Y A | B)-u) = 6x(B)-A (L)Y Ad-u)
+ Dy[6x(B)-A ()¢ 1. (4.23)
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Proof: The proof is a straightforward computation towards the past and the future, then
where we made use of identities like

(PuYDoh (Pu) dP du = Q. 4.25
AM@uwy=A ")) u+ Y su(D)A |\ | D), E><Sf( WD (P 425)
er @.24) Proof: We have fyDoh = Dy( foh ) since D f, = 0 To
prove f . sDo( foh YdPdu = 0 we transform the integral to a
Dbx(B) =6u(B), and D =u-V¢. Lorentz frame and the result follows by partial integration
Lemma 6: Let h: E X S—R be vanishing sufficiently fast since the surface contribution vanishes.

Lemma 7: Let B and C be two nonempty disjoint and finite subsets of N and 0ecBUC, then

D (r!)-!LXS[A rOPu+ S A(F1C\\\k)(¢k-u)}/od}’du

I'eP(B) {kielr

= repz(c)(r - LXS AT BYPeu+ 5 AT |BIN| k)(drk-u)}[odeu (4.26)

{k el
Proof: From (3.6) we obtain

moe 8x(C)-[Dbu(B)fedPdu= 3 (I')" f 6x(C)-[ A DYV A Dytd)
q E XS reP(B) E xS
+ 3 AT\ AXYA ¢k-u)}fodeu. 4.27)
[k ler

Substitution of (4.22) and (4.23) in the right-hand side of (4.27) yields

et f 8x(C)-Dbu(B fidPdu= 3 (I !)ﬂf [A CICXPe)+ Y AT |CI\ | k)(qSk«u)}[odew (4.28)
q Jexs reP(B) E xS VK Jel
The D, parts from (4.22) and (4.23) vanishes due to Lemma 6, which may be used since 0cBUC. We obtain form Lemma 6 that
J 6x(C)-Dbu(B )fedPdu = f 5x(B)-Dbu(C Y dPdu. (4.29)
E xS EXxS

Lemma 7 now follows from (4.28) and (4.29).
Lemma 8: Let meN * and m>2, then

J AN S YowfdPdu = 3 (Y J {A (C1oXPeu)y+ > A0\ k) (¢k-u)}/odeu. (4.30)
E xS TeP(N ) E XS {klel
r k

Proof: Choose B = {0} and C= N, in Lemma 7 and Definition 7: M(m,k) = {I'eP7 ~*(N,,) | OeBel'=
Lemma 8 easily follows. n(B)<k }.

Lemma 9: Let B and C be disjoint subsets of N with Lemma 11: Let k,meN * and 2 + 2k<m, then
n(B)>»2, n(C)>2, and 0eBUC, then

A= S A (4.34)
- F . 431 reM(m,k) reM (m,k + 1’)
rep{ByC,C) 40 FeP‘(;;C‘B) 410 31 Proof: Trivially (4.34) is equivalent to
Proof: For I'eP (B) we have (I" | C)! = (n(B) + n(c))! > A=Y AT), (4.35)

X (n(b)in(c))'I'! and since n(C)>2 we have 2, ret e

=%, 1ecr | and thus it follows from (4.26) and (3.3) that ~ Where
I, =M(mk+ D\M(mk),

A = A) 4.32)
I‘ePz(%\:JC,C) FGPZ(%JC,B) I, = M(mk)\M (m,k + 1). (4.36)
and Lemma 9 follows. We will prove that
Lemma 10: Let meN and m»2, then I,= u P(N,,C), L= u PyN,,D), (4.37)
Cel. Del,
J G0 ™[y, 1dP = 2 A). (4.33) where
E reP(N..i0])

I,={CCN,,|0eC and n(C)=k + 1},

Proof: Rewrite the term corresponding to I' = {N 7 } _
in Lemma 4 according to Lemma 8, then it is straightfor- I,={DCN,| 0£D and n(D)=m —k|. (4.38)
ward to derive Lemma 10. In order to do this we define
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M, = {[ePN,) | (1): | |5k + 1,Q2): [T |<m —k — 1,
(4.39)
(4.40)

(3):0eCelr=>n(C) =k + 1},

M, = {IeP(N,) | (a): Ln#£8,0): || = m — k,
(c): 0eCel'=n(C )=k + 1}.

Now (4.37) easily follows from (4.41)—(4.44) below,

Mlcl,n[ U P;(Nm,C)], (4.41)
Cel.
Mzcm[ U P,(N,,,,D)], (4.42)
Del,
Ilu[ u P;(N,,,,C)]CM,, (4.43)
Cel.
Il u P;(Nm,D)]CMz. (4.44)
Del,

It is mainly a matter of checking to prove (4.41)—(4.44).
We will just demonstrate (4.43) since it is rather similar to
show (4.44) and (4.41)—(4.42) are trivial. It is easy to see that
I,CM,. For a I'eP,(N,,,C) where Cel, property (1) and (3)
in (4.39) follows directly. We prove that I" also have proper-
ty (2) by contradiction: |[I" | >m — k — 1=>3Del" n(D) >
m —k — 1and 0¢D (since OcD=n(D) =k + 1>m
— k — 1=>m <2k + 2 but we have assumed m>2k + 2)
—=we have I = {D }u{C }ul', and since n(I")>3 we have
I'#® and n(N,)>n(D) + n(C) + 1=m + 1
sm—k—-D+k+D+1om+1>m+ 1.

It is easily proved that I, and I, are expressed as unions
of pairwise disjoint sets by (4.37), thus

SAM)=S [ S AD), (4.45)
rel, Cel, reP(N,,C)
SA) =3 [ s am)|. (4.46)
rei, Del, IeP(N,,D)

The mapping C—D = N, \ C defines a bijection I,—I,
and may be used as a variable substitution in (4.45). From
Lemma 9 we obtain
Cel, and D=N,\C= A)

I'eP(N,,.C)

AWD). (4.47)

By the variable substitution and (4.47) we transform the
right-hand side in (4.45) to the expression on the right-hand
side of (4.46), and now Lemma 11 is proved.

Proof of Result 1: We have P(N,,,{0}) = M (m,1) and
thus from Lemmas 10 and 11 we obtain

f e8I P ($ybp ] dP= T AD),
E reMm,!)

m=2or2l+1, [I=12,.. (4.48)
The set M (m,/ ) may be expressed as

M@m)])=P\N,), m=2l, (4.49)

M(m,l):Pg(Nm)u[ U P;(Nm,D)], m=20+1.
Del,
(4.50)
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We define I; and I, as
L,={CCN,,|0eC and n(C)=1+1},

Iy={DCN," |n(D)=1+1}. 4.51)
We use the notation
A{l)= EA(I“) (4.52)
rer

and in a similar way as in the proof of Lemma 11 we obtain

A ( U P;(N,,,,C)) =A ( U PyN,,.D )). (4.53)
Cel, Del,
From (4.53) we now get
A ( v P(N,,D )) =14(,) (4.54)
Del,
since I,,, defined in (3.1), may be expressed as
I, = [ v PyN,,,C) u[ U P,(Nm,D)]. (4.55)
Cel, Del,

From (4.48), (4.49), (4.50), and (4.54) we obtain Result 1.

5. DISCUSSION

There is a formal relationship between our expressions
(3.1)—(3.2) and the Mayer cluster expansion of the m + 1
particle distribution function. In both cases we obtain a sum
of terms each depending on a correlation index' [in this pa-
per we have chosen to represent the set of correlation indices
by P(N,,)], however in the Mayer cluster expansion all cor-
relation indices in P (¥,,) appear, while in expression (3.1)~
(3.2)for A,,(o,...,4,,) only some of them appear. That, in the
Mayer expansion, all indices 0,1,...,m should be treated in a
perfectly symmetric way is evident from the outset but it is a
remarkable fact that this happens to be the case alsoin (3.1)-
(3.2). Clearly the index 0 would be expected to play a role of
its own and indeed it does but not as a summation index in
(3.1)—(3.2). The different treatment of 0 as compared with 1,
2,...,m enters in the boundary conditions (3.7)-(3.8). This
peculiar quasisymmetry in 0, 1,...,m becomes a “true’” sym-
metry, if the perturbation asymptotically leaves particle or-
bits unperturbed (Corollary 1). In other words, if we neglect
particles which are resonant with the perturbation this sym-
metry is obtained.

Corollary 1 is a general form of an important class of
symmetry relations among plasma response functions. The
simplest example is the anti-Hermitian property of the prin-
cipal part (thus neglecting resonant wave-particle interac-
tion) of the linear conductivity tensor. Another important
example is the well-known symmetry of the principal part of
the three wave coupling coefficients implying conservation
of wave energy and momentum in the coherent interaction
of three waves and also in the weak turbulence equations.
Recently corresponding three-wave results were derived for
inhomogenous relativistic plasmas.'> For a homogeneous
magnetized plasma a more detailed discussion of these sym-
metries will be given in part II of this paper and Ref. 1 where
the expressions for the response tensors of arbitrary order
are obtained from Result 1. From Corollary 3 we observe
that not only the operator A4,, possesses this symmetry but
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also each part 4; has it. The symmetries of the coupling coef-
ficients are often used as an indication that no mistake has
been made in their normally very lengthy algebraic deriva-
tions. For 4-wave and higher order interactions a possible
mistake, which will not be discovered by symmetry viola-
tions, is the omission of some 4 ; term ind,,.

In the Introduction it was said that the results of this
paper would probably be much more difficult to obtain by
straightforward iterations in the Vlasov equation. This is
simply due to the fact that while the quantities 5x(8 ) and
Su(B ) naturally appear in the method used in this paper, they
do not in the other approach. One may object that there may
very well be other equally useful formulas for the operator
8J ™ and that we obtained the particular one in Result 1 is
due to the method of calculation used. An indication that
this is not the case is the result for the three-wave coupling
coefficient in Ref. 13. The structure of the expression ob-
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tained is in good agreement with the results in this paper and
the iterative method was used.
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Current responses of all orders in a collisionless plasma. Il.
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Expressions for the admittance tensors of all orders are obtained for a relativistic
magnetized Vlasov-Maxwell plasma. Symmetries, from which the Manley-Rowe
relations follow, are explicit in the expressions obtained. The treatment is covariant.

1. INTRODUCTION

In the first part of this paper,' which we denoted by “1,”
only the most general background plasma was considered.
In this Part II we apply the general formulas in I to the
particular case of a homogeneous and stationary back-
ground plasma. We then obtain covariant expressions for the
admittance tensors of all orders with the important symme-
tries related to the Manley—Rowe relations explicitly exhib-
ited. In the particular case of the nonrelativistic second order
response we compare and get agreement with a result in Ref.
2.

We will use the notation in I. A slight extension of the
formalism is needed since we want to make the calculations
in Fourier space and coordinate-free. We thus introduce the
complexification V'* = V + iV of the real vector space ¥ and
the admittance tensor of order m is an element in the tensor
space (' )em+ D,

2. THE ADMITTANCE TENSORS OF ALL
ORDERS

We consider a homogeneous stationary background
plasma and thus fo(P,u) = fi(u) (i.e., /s is independent of
PeE)and V ;A\ @, isindependent of PEE. We choose an event
O as origin and this gives rise to a vector space structure on
E, since each PeE now determines the vector P — Oin V. We
will use the somewhat sloppy notation xeE where xe¥ and
the event we have in mind is x 4 OcE.

The Fourier transform of a function G (x) where xeE is

G (k) = LG(x) exp( — ik-x) dx, Q.

where k¥ or sometimes k¥ * = V + i¥. (In a Lorentz
frame we recognize x = wc'e, + ke, + k.e, + kie)

The inverse transform is

G(x)=Q2m* fy G (k) exp(ik-x) dk. 2.2)

Remark 1: In Sec. 2 of I it was shown how to define a
natural measure on E and ¥ so the integrals (2.1) and (2.2)
are well defined.

Remark 2: Depending on the properties of G (x) it may
be advantageous to allow  to take valuesin ¥ *. When G (x)is
a perturbation we have the boundary condition G (x)—0
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when x—the infinite past. If we take xe¥* and Imx (imagi-
nary part of ) in the future direction, then |exp( — ik-x)]
= exp(Imx-x)—0 exponentially towards the future and this
might.improve the convergence of (2.1). The validity of (2.2)
may then be increased if we integrate over a plane V' + i Im«
in V.
Remark 3: In the particular case when G (x) vanishes in

a half-space in the past we take Imx perpendicular to the
spacelike plane defining the half-space and the origin O on
this plane. Then (2.1) and (2.2) is the Fourier-Laplace trans-
form and its inversion. This is easily seen if we take a Lorentz
frame (0,e,,e,,e,,¢;) With e, parallel to Imx:

K=wc'e,+k, x=cte,+x, Imk=c"ye,
2.3)
G (k) = f cdt f G (t,x)e ~ *e" dx,
0 R’
G(t,x) = (2m)* f

R

ctdw f G (w,k)e™ e —“ d k.
+ iy R’
2.4

Definition 1: The admittance tensors A f(’"),(
e(V)2m+ D where m = 1,2, and V* = V + iV, are de-
fined by [we take L (E,V) and &, = § ¢ (x)

X exp( — ik-x) dx]:

0 e [ae . (")b.o0d,
Xexpl[i(k, + - + &,,)-x] dic,--dx,,

=6J[¢ ](x), 2.5)

m
YA
@ii) A ~T~( . )“w(l) L)

—ag, (Mas-ea, @6)

for arbitrary vectors a,,...,a,,€V* and permutations 7 of
{L.,m}.

Remark 4: From (2.5) we obtain

8l.= 3 @m ¥ f Aiﬁ‘.’..,x,,,(m)@.@---@#..

m=1
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X6 (k — Ky — - — K, ))dK,dK,,, Q.7
which combined with the transformed Maxwells equations

is a suitable starting point for the study of weak interaction of
modes or quasimodes.

Remark 5: To get numbers from our formulas we have
to leave the coordinate-free formalism and express our quan-
tities as coordinates. In a given Lorentz system (0,e,,¢,,e,,e5)
we express the mth order conductivity tensor as complex
numbers A (xl,...,K,,,)"“"“""", where i, = 0,1,2, or 3, and the
transformed 4-potential and «,, as numbers ¢ (x)' and «(v),
i =0,1,2,3. These numbers are coefficients for our abstract
tensor space quantities so that

(m)
A Ky K,

¢ =08 W'e, &, =x(¥e,

(2.8)
(2.9)

L= A (Kl,...,Km)im”"i"'eio ® e @ e[m,

where we use the Einstein summation convention. In index
calculus we have rules for raising and lowering indices. If we
lower the index i, on A in (2.8) and raise it on e (e,-v—>e"“) the
equality in (2.8) is still valid. The vectors ¢ are defined from
e; by ei-ej = &, Since we are working in a Lorentz system,

e, = —e°and e; = ¢'for i = 1,2, and 3. Raising or lowering
index O on a number thus results in multiplication with — 1,
raising or lowering 1, 2, or 3 leave the number unchanged.

Remark 6: In (2.3) a factor ¢ appears and in (2.4) a
factor ¢*. In the usual definition of the Laplace-Fourier
transform these factors do not appear and in order to avoid
them we could have replaced dx and dk in (2.1) and (2.2)
with ¢"'dx and cdk. It is easy to see that A f("‘),( is not
changed if we make this replacement everywhere above
where dx or dk appears.

Result 1: Let m be a positive integer and &,...,k,,,€V, where k, + -+ + k,, = 0. Then for arbitrary vectors By, €V We

have
1A 5(())\1), ifm=1, (2.10)
A if m=2l, I=12,., @.11)
A = re}%m,) e
1y AL+ Z AL o, fm=2+1 [=12. (2.12)
rel, TeP(N,)
where I, = P{* (N )\PY(N,)and A [, isdefined from
2% f(’")¢ &8, =cm+ DI Tme 3 3 fﬂ@)[ [1 ixk'éiw)]
: o (Klel Be(I |\ k) /S ce(r N1k |B)
X [gmg '84(B )V A Dy65({k }) — c26u(B)-8u({k })]du. (2.13)
The quantities 55(B ) and 8i(B ) depend linearly on each @, for ieB and are determined by the hierachy of equations
D [kp}0x(B) = 6u(B), 2.149)
D (k5] — gmg” VA DNIE) =qmig ' S ) F | [ ieed¥(C)]
reP(B) fkielr L Ce(I"|\| k)
X{ikAgu+ S [k 85(C)] 7K /\q?k-aa(C)], (2.15)
Ce(r N k)
where kg = 2, x; and
D [ky] = iukp+gmg 'cH(VeA Pou)Vs. (2.16)

Poles appearing in (2.13) shall be treated in accordance with the Landau prescription (see Remark 9).

Remark 7:In a Lorentz frame(0,¢e,,e,,¢,,¢;,),chosen such that the external field is purely magnetic and B, = Be;, we obtain

- . . 8)
D =’ — kv — —— ),
[«] uc( iw + ik a)ca¢

D (k] — gmg "¢V APy = u°c“( ~iw + kv — o,

9 _ we N ez-).
9¢

(2.17)

(2.18)

Here v is the ordinary velocity (# = u%e, + ¢'v) and ¢ is defined from v = v, cosde, + v, sinde, + v,e;. In (2.17) and (2.18) we
recognize the relativistic versions of g~ ' and 4, ' appearing in Ref. 2. We observe that — Bee, A e, is a four-dimensional analog

of B, X.

Remark 8: Thehierachy of equations(2.14) and (2.15)defines 5%(B Yand 84(B ) recursively. First calculate 5%(B )and 6u(B )
for n{(B) = 1; then for n(B) = 2 and so on. It is easy to see that §5(B ) and §4(8 ) will depend linearly on each ¢, for /eB.
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Remark 9: 1t follows directly from (2.13) substituted in (2.10)—(2.12) that

~ my\ - - - mj - T
3pA D (") bio 08 = PAD (") ® @By .19)

where 1 is an arbitrary permutation of {0,...,m} and Pindicates that only the principal part of the integral in (2.13) is included.
The symmetry (2.19) is obvious, due to the perfectly symmetric treatment of the indices 0,1,...,m in Result 1, apart from the
Landau prescription which of course has no effect on the principal parts appearing in (2.19). The pole contributions are
correctly obtained if we, while performing the velocity space integration in (2.13), take x,€¥* with Imx; directed towards the
future for / = 1,2,...,m and «, still such that «, + - + «,,, = 0. Clearly Imx, is directed towards the past, which introduces an
asymmetry. If pole contributions may be neglected, the symmetry relations (2.19) imply conservation of wave energy and
momentum and the Manley-Rowe relations.’

Result 2: If we in Result 1(I) take ¢ (x) = ¢§] exp(ik;x), where jeB and ¢~j eV, then

6%(B) = 6x(B) exp( — ik g-x), (2.20)

SuU(B) = du(B) exp( — ik gx), 2.21)
where k5 = 2, 5 x;and 6%(B ) and 6u(B ) are defined by (2.14) and (2.15).

Result 3: If ¢ (x) = ¢;j exp(ik;x), jeN,, and (15] eV, then

- m\ - -
AY =@yttt )der L (" Voo, (2.22)
Remark 10: In Result 3 &, is a free variable and not defined as x, = — x, — - — k,,. However, when x,5& — k, — - — K,
both sides of (2.22) vanish.
Corollary 1:

‘50’/1 fcz,)x : ‘51 ® ¢§z =

in;oc Lﬂ’(”)( ey 87(0) 53(1)-83(2) + ¢, S%(1)8E(0)-8(2) + ey 85(2) 5(0)-5i(1)

+

r: (K NV £ A Do, 8F(0) ABid(1) A 5%(2)) + ;Z (K, AV 2 A Do, 5%(0) ASiE(2) A 5;2(1))) du, (2.23)

where 8X( ) = 8x({/}), etc.

Remark 11: Corollary 1 is a relativistic generalization of (6d) in Ref. 2. Note that 8%(7) corresponds to m; 'g, (7. (F)]
and c6i(i) to my~ 'k, (F,) in that paper.

3.DERIVATION OF THE RESULTS IN SEC. 2

Wetake ﬁ).and V2 A &, independent of PEE and @,...,¢,,, as in Result 1 of I. In Lemma 2 the accordingly simplified version
of Result 1 (I) is given. Result 1 (of this paper) is just the x-space version of Lemma 2.

Definition 2: A, (I') = H 6x(B )-V ;. in formal notation analogous with (2.19) in I. 3.1
Ber”
Lemma 1:

AT N kY ud) =Dolde(C INIKDG g )]+ S SuB)Ag(l [Nk |B)dy—Dg '[Vewsd)]} (.2

and Be(FT\ |k)
Sy — Dy 'Ve(ud,) = — muciqgSuk) + VA @ybx(k). 3.3
Proof:
ANk ) =4, (T IN|KYud )+ S 8u(B)A (T |\ |k |B)py G4
Be(I" [\ |k)
Do[Ap(I" IN|K)D 5 Hu-¢,)] = > Su(B)Ag(I|\ |k |BIVeD o (i) + Ap( |\ k) u-dy). (3.5)

Be(I' |\ |k)

Substitution of (3.4) and (3.5) in (3.2) and making useof V. D ;' = D o 'Vy, which s valid due to homogeneity, proves (3.2).
Apply the operator D, to both sides of (3.3) and we obtain (3.6) of I for B = {k } if we use the fact that Vg A @, is constant.
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Lemma 2: Take ¢,,...4,,L(E,V) for sufficiently nice #.cL %(E,V); we have

14 (0|1), for m=1, 3.6)
z AW, for m=2I, 1=12,-, 3.7
J (P )T [ bryees ] (P) AP = 8 rePTN,)
E
1 ZA (r)+ Z A, for m=2+4+1, I=12,-, (3.8)
rel, FePY(N,)
where I, = P{* (N, )\P*(N,,). Here
AN = 2 moc(m + DAY Y 2 fow) bu(B)-Ag(" |\ 1k |B)[my 'qVe A P@ybx(k) — c*Su(k)] dP du,
o {klel Be(I |\ |k)JE XS
(3.9
where
Débx(B) = bu(B), (3.10)
DSu(B) — gmy "¢V A DSu(B) = qmy ¢ 2 oy 2 AL INEYV A dpeu), 3.11)
reP(B) {Kjel
with boundary conditions
8x(B), Su(B )—0 towards the past if 0£B, (3.12)
ox(B), Su(B)—0 towards the future if 0cB. (3.13)

Proof: We first give an extension of Result 1(I) in order to also cover the linear (m = 1) case. By combining Lemma 4(I)
for m = 1 with Lemma 7(I) for B = {0} and C = {1} we obtain

L¢0(P)~5J“’[¢1](P) dP = (qc/Z)L Sfo(P,u){A (D[u-po(P)] + 4 (O)u-¢,(P)} dP du = 34 (0[1), (3.14)

where the last equality is a definition. Expression (3.14) is valid in the general inhomogeneous and nonstationary situation.
Note that formula (I1.3.3) [(3.3) of I] gives 4 (") only for n(I")>3. However, in the homogeneous stationary case we obtain a
single formula (3.9) valid for n(I")>2.

From Result 1(I) and (3.14) we now derive Lemma 2. It is easy to see that (3.10) and (3.11) follows from (1.3.5) and (1.3.6)
and the homogeneity in space—time. From (1.3.3) and (3.14) and due to homogeneity,

A (N)[u-Do(P) =0 for n(I")>3,

we obtain

Ay =ge(m + DAIH Y S@)A (L |[N1Kk)[@p(P)u] dP du. (3.15)
{kjer VE XS
Now (3.9) follows from substitution of Lemma 1 in (3.15) and an application of Lemma 6 of 1. This finishes the proof of
Lemma 2.

Proof of Result 2: 6x(B) and Su(B ) are determined from (3.10) and (3.11). Substitute ¢, (x) = ¢~j exp(ik;x) in these
equations. It easily follows [by induction on n(B ), first take (B ) = 1 in(3.10) and (3.11), then n(B ) = 2, and so on] that 6x(B )
and du(B ) vary in space—time as exp(ix g-x). Thus D6x(B ) = D [« 5 |6x(B)and D,Su(B ) = D [« ]6u(B )anditiseasy toshow
that 8x(B) exp( — ixp-x) and Su(B) exp( — ik g-x) satisfy (2.14) and (2.15) and Result 2 follows.

Proof of Result 3: Substitute ¢(x) = gz;J exp(’k;x) in (3.9) and make use of Result 2, then

A =me(m + DHYAITH! 2 2 So(w) exp[i(ic, + - + &,,.)x] [ zkk-(Sf(C)]
jAJel Be(£ |\ |k)JE XS Ce(r' |\ 1k |B)
X (gmg '84(B)V g A @ybx(k ) — c26U(B )-6x(k ) dx du. (3.16)
We now use
J exp[ ik, + - + «,,)x] dx = 2m)*S(ks + - + K,,,) 3.17)
E

in (3.16) and perform the x-integration. Comparison with the definition of A " in (2.13) now gives Result 3.

Proof of Result 1: We prove that A {™  as given in Result 1 have the properties in Definition 1. Here only (2.5) is
nontrivial. We will prove that for ¢,cL °(E,V') and ¢ €L(E, V), j = 1,...,m that
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[ 6087 161,160 dx = 2= [ 83 A 0 1 (")) & 8,600 exPliCe, + - + 1)) iy i,
E .

(3.18)

which implies (2.5), since (3.18) is true for all ¢,€L °(E, V). From (2.10)-(2.12) and (3.6)-(3.8) we see that it is sufficient to show

A0 =0m " [ 8L (")) 88,00, explites + -+ 5, x) o, d,

(3.19)

for arbitrary I'eP,(N,,). Substitution first of ¢,(x) = 27)™f Bo(Ko) exp(ikox) di, and then of (3.17) in (3.19) yields

Ay =Qm) 4+ D f QmY8(o + + + K, )bolk)A L ('" )qi(x.) ® 84, (k) diy-dx,,

(3.20)

and since (3.20) easily follows from Result 3, which we have already proved, this finishes the proof of Result 1.

Proof of Corollary 1: From Result 1 we obtain

deA D diodi= 2 »d f fo(u)fxa-&e(y)( 9_5a(B)V; A ¢o-5f(a>—c25a<ﬁ)-6a<a)) du.

aBy =0 Mo

atfEya

3.21)

It is very easy to compare the terms not containing @, in (2.23) and (3.21), we only need to use

Ko+ Kkp+ K, =0.

(3.22)

It is rather tedious to compare the @,-terms in these expressions. Note that the @,-terms in (2.23) contain no éu(0), in
(3.22) we substitute D [«,]6x(0) for $u(0) and integrate partially {i.e., we use Lemma 6(I) in «x-space; f . .. s fo(#)D [«]
h (1) du = 0} and so we may avoid 6u(0) also in (3.22). It is now straightforward but tedious to compare the @,-termsin (2.23)

and (3.22) so we omit these details.

4. CONCLUSIONS

Expressions for response tensors in magnetized kinetic
plasmas have been given in this paper, which give new in-
sight into their structure and symmetry properties. We refer
to the discussion in Sec. 5 of I in which some statements, in
view of this Part 11, now are seen more explicitly.

Very little was previously known concerning third and
higher order response tensors, so essentially everything is
new for m>3 in this paper. The case m = 2 has received
much attention since it concerns the lowest order nonlinear
effects (i.e., typically three-wave interaction). Expressions
exhibiting the important symmetries (7.19) have been de-
rived in this case by different methods.**

A most important aspect of the response tensor formu-
las in Result 1 is of course whether they can be useful in
actual numerical calculations. The need for such formulas is
evident from the present literature on nonlinear plasma the-
ory. Typically nonlinear investigations start from the basic
equations, in our case the Vlasov—Maxwell equations, and
lengthy derivations are needed to obtain for example a three-
wave coupling coefficient valid for three particular normal
modes. The situation is quite different for linear investiga-
tions; in this case we do not start from the Vlasov-Maxwell
equations but instead from the existing standard expression
for the linear response,® and this saves us from much tedious
work and many possibilities of making mistakes. Actually
there exists a corresponding expression for the second-order
response tensor,” which is thus much better to begin with
than the basic equations, when we consider quadratic pro-
cesses in a plasma. This expression deserves particular atten-
tion since at this time there is no alternative formula of com-
parable simplicity. It is thus most promising that this
formula was derived from a particular case of Result 1 in this
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[paper, since then it might be possible to derive correspond-

ing results to all orders and relativistically from Result 1.
Indeed this turns out to be possible. The algebra is, however,
simplified considerably if we do not insist on writing covar-
iant formulas but instead choose a Lorentz frame in which
the constant external field is purely magnetic. These results
will be presented in a separate paper without recourse to the
coordinate-free formalism used in this paper.'

The homogeneous plasma is just the simplest applica-
tion of Result 1(I). It remains to be seen how useful this
result will be in cases where the unperturbed plasma has
some particular geometry and/or is time dependent. It may
for example be toroidal and turbulent. At least the potential
area of applications of Result 1(I) is extremely large; math-
ematically it is a general alternative starting point to pertur-
bation problems for a Vlasov—Maxwell plasma.

In some cases the Vlasov equation is unnecessarily ad-
vanced and we may use for example the collisionless two-
fluid model with scalar pressure; it is almost evident that
formulas for the response tensors, which are closely related
to those in this paper, in such a plasma can be derived.
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Weak quantization in a nonperturbative model
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The concepts of extended operator convergence and of spectral concentration are used to
study rigorously a class of simple models for the tunnel effect and the laser. We
compute exactly the asymptotic decay times of the eigenmodes, and we prove their link

with the line width of the corresponding resonances.

I. DESCRIPTION OF THE MODEL

A massive quantum particle is restricted to move on the
one-dimensional half-space [0, «0 ) with a rigid wall at x = 0.
Its motion is free, except for a “square” potential barrier,
starting at x = 7, with height a and width b; for simplicity,
we shall first assume that b is independent of @, and we will
only later (Sec. IV) indicate the modifications to be brought
to the theory when b is allowed to go to zero as a approaches
infinity. The Hamiltonian of the system for finite >0 is thus
H,= H,+ aV, where (V/)(X) = Y (7.r + (X} (x) for all fin
' = SLX[0, 0),dx); H, is the self-adjoint operator — 4,
where 4 is the Laplacian, with domain [see X.3. in Ref. 1]
9= {¢e’| ¢ and ¢’ absolutely continuous; ¢”€.%#"; and
#(0) = 0}. Since Visbounded, &, is also (see V.4.1in Ref. 2)
the domain of self-adjointness of H. Note that the spectrum
of H,is [0, ) and is absolutely continuous with respect to
Lebesgue measure; in particular, H,>0 for every finite a >0.

This system is thus the simplest possible, and is a well-
known (e.g., Ex. IIL.3 in Ref. 3) model for the tunnel effect.
The purpose of this paper is to present a precise mathemat-
ical analysis of the asymptotic behavior of this system as @
tends to infinity.

In the limit of infinitely large a, the physicist’s intuition
is that the wall decouples the inside region I = [0,7] from the
outside region 11 = [# + b, ), and that the evolution is
free in both of these regions, which are then limited by rigid
walls at x = 0, 7 and 7 + b. The Hilbert space of the system
thus becomes % = %" & 7™ with " = £2{[0,7],dx],
HM = #[7 + b,),dx} and the evolution is governed
by the self-adjoint operator H = H'e H' givenby — 4
in both regions, with respective domains': ' = {¢e%#”|¢
and ¢' absolutely continuous; ¢”€5%”; and #(0) = 0 = ¢(7)}
and " = {¢e#"!|¢ and ¢’ absolutely continuous;

"e™; and d(m + b) = 0}. Note that H __ is the Friedrichs
extension [see for instance V1.2.3 in Ref. 2] in 57 _ of the
restriction of H, to the dense domain & , = & NP7, where
P is the projector from 5 onto 7.

H "5 clearly unitarily equivalent to H,, and therefore
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grant MCS 76-07286.
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has absolutely continuous spectrum. H ' on the other hand
has a purely discrete spectrum {m?|m = 1,2,...}.

Whereas H , is obviously a perturbation of H,, it is not a
small perturbation away from A _. Our aim is to describe
how H _ is nevertheless the limit of H, as a tends to infinity,
and to control this limit well enough to allow an understand-
ing of the exponential decay which one expects on physical
grounds in the tunnel effect.

Il. OPERATOR CONVERGENCE

Before addressing the problem of exponential decay we
want in this section to elucidate the sense in which H _ is the
limit of H, as a tends to infinity.

Theorem I1.1: For every ¢ in &/, a domain of essential
self-adjointness of H _, there exists {¢,]a€(0, )} C D, such
that, asa— oo

(D) l|¢a — 8l =0 (a),

(i) |Hp, — H ¢ =0 (@)

Proof: We can deal with regions 1 and III separately. Let
first pe 2", which we embed in 7 by setting ¢(x) = O for
allx<X =7+ b.If¢'(X) = 0, d belongs tothe domain of H,,
as well, so that (i) and (ii) are trivially satisfied by ¢ , = ¢ for
all ae(0, «c ). We can therefore suppose, without loss of gen-
erality, that ¢'(X) = 4540, and that there exists € > O for
which ¢ does not vanish in (X,X + €. Let £ and £ be two
nonincreasing functions in € “( — 0, c) with £(x) = 1 for
allx<0, £ (x) = Oforallx>m; § (x) = 1forallx<X,§ (x) =0
forallx>X + €. We further define, for every a > 0 and every
xin [0,X]:

P, (x) = Aa? exp[(x — X )a'?].

One then verifies that an approximating net {@,|a€(0, <)},

in the sense of the theorem, is obtained by setting ¢,(x) equal
to:

— Aa? exp(— Xa'?) § (x) + ¥.(x),
¥ (x), for xell = [m,m+ b ]
Aa*E (x) + ¢ (x), for xelll = [7 + b,0)

Hence 2" C & . A similar argument could be made for re-
gion I. We, however, find it more instructive to construct
explicitly one approximating net {¢,|ae(0, )} for each

eigenvector ¢ ™ (m = 1,2,-) of H'. We chose ¢ “(x)
= sinmx, and embed ¢ ™ in & be setting ¢ “(x) = 0 for

for xel = [0,7]
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all x>. For each m fixed, we define m,, with m,—m as
a— o, by m,~ ' tan(m,m) = — a*”2. We further introduce
M ™ = g sin(m,m). Upon noticing that (m — m,) and
M — M are both O (a') as a— o, one verifies that an
approximating net {¢ ¢™|ae(0, )}, in the sense of the theo-
rem, is obtained for ¢ "™ by setting ¢,"™(x) equal to:

sin(m x), for xel

M ™a 2 exp[(r — x)a'?], for xellUIIL

Note that {¢ ™|m = 1,2,...} is an orthogonal basis in
', consisting of eigenvectors of H'; H!is thus essentially
self-adjoint on the linear span of these vectors. The above
argument shows that this manifold is contained in & . We
can therefore prove the assertion of the theorem with

2 = span{¢ ™ |\m =12,-} 0 ™. Q.E.D.
Let now {U,(t)|te( — oo, + )} (resp. {U_(2)|
te( — oo, + o)}) be the unitary group on & (resp. #° )
generated by H, (resp. H_).

Corollary 11.2: For every ge#° _ and every T€[0, )

lima-»wsup0<th“ Ua(t )¢ - Uw(l )¢ || =0

Proof: With & as in Thm. II.1, we have [see V.3.4 in
Ref. 2] {(H , — iD)¢|¢eZ | dense in #°_ . The corollary
then follows directly from Kurtz’ criterion® in his theory of
extended operator convergence.

Hence on the Hilbert space 7 corresponding to the
limit of an infinitely high wall, the time-evolution U,(z ) con-
verges strongly to the limiting time-evolution U _(¢), uni-
formly in ¢ on compacts. The latter result (for » independent
of @) is not new.>® As a particular case of these papers, one
has indeed, as a— o, that the resolvant R (z) of H, con-
verges strongly on #°_ to the resolvant R _(z) of H  for
every zeC — [0, 0 ) [in conformity with Corollary 11.2, by a
slight modification of the classical argument (see IX.2.5 in
Ref. 2)}. Moreover,* it follows from the strong resolvant con-
vergence that, as a— oo, the semigroup [S(z)
= exp{ — H t)|£€[0, )} converges strongly on #° _ to the
semigroup {S_(¢) = exp( — H _t)|t€[0,0)]. The estimate
of Theorem II.1 however is new, and is of some independent
interest [see in particular Sec. IIT and IV below].

lll. DECAY

We saw in Sec. II that the limiting dynamics corre-
sponds to the hard wall condition in the Hamiltonian H .
The limiting process has drastically changed the spectrum
from continuous (H,) to discrete (H _ ). We now turn around
and think of the initial system as the one with infinitely high
walls, and then bring down the wall to a finite, albeit very
large, height. In such a scenario the spectrum of the relevant
Hamiltonian makes a transition from discrete to continuous,
a transition we want to investigate in detail. For this purpose
we use the spectral transformation (or generalized Fourier
transform) of H, (for these notions the reader may consult
Ref. 7).

In this simple model, we can solve the Schrédinger
equation exactly and obtain the eigenfunctions {, |4
€[0,0)}:

1337 J. Math. Phys., Vol. 20, No. 7, July 1979

ra(k) sinkx,

4 = 4 P L= = m) +B.k) explé (=),

y(k)sin[k(x —7— b))+ 6],

-

where we havewrittenk 2 = Aand £ = (a — k ?)"2. Thecoeffi-
cients a, f are determined in terms of ¥ by the requirement
that ¢, be locally in the domain &, of H,, i.e., ¥, and ¥} be
locally absolutely continuous. For most of our calculations
we shall need the details of only , the latter turning out to be

a(k ) = y(k y{sin*(km) — k5 7 cos’(km)
+ alk 'n_(k) sin(km) + & 'k ) costkm)]*}™, (1)

where 7 , (k) = [exp(£b) + exp( — §b)]/2. We choose the
normalization ¥(k ) = (wk )72

We take the initial situation to be the one with infinitely

high walls and begin with an eigenmode ¢, [¢,(x)

= (2/7)"? sin(nx)] of H " trapped in region 1. The wall is
then “lowered” from a = o to some finite, but large a. We
want the asymptotic behavior, as a— o, of the probability
[(¢,.exp[ — iH t 1¢,)!* that the eigenmode ¢, (now evolving
under the group exp[ — iH,¢ ]) will remain in the same
mode after a time ¢ has elapsed. From Sec. II, U (¢) con-
verges strongly to U_ (¢ ) on 5#; from this it follows that the
above probability converges (uniformly in # on compacts) to
l|#,]]* = 1, as - . Further information on the rate of this
convergence is of physical interest for the description of the
tunnel effect. We observe that

Gexp( — iHt )4,) = J T diexp(— i) |6,4))n @)

where

b.0) = f dx v (2)*6,00) 6)

is the spectral representative (or generalized Fourier trans-
form) of ¢,. We have

|#,A) | = Qm)'alk )[(k — n)'sin(k — n)m

— (k + n)'sin(k + n)7. 4

The term in square brackets is bounded in k and converges to
7* as k—n; therefore, the major contribution will come from
a(k )*. From (1) one concludes that this contribution origi-
nates from the neighborhoods of the zeros of the a priori
larger term (as a— ). This leads to the resonance equation
(or approximate eigenvalue equation):

F(ka)=0, 0<k<a? %)
where
Fka) = [n(k)/n.(k)]} tanks + [k /€] 6)

We observe that Fis € * in a neighborhood of (1, ), with
F(n,00) =0 and F, (n, 00 )=(0F /dk ) (n, 0 )7#0. From the
implicit function theorem® there exists a positive a,, large
enough such that for all @ > a,, the resonance equation (5)
has a unique solution £ = k,(a) [i.e., 4 = A(n,a) = k,(a)*]
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with A (n,0) = n’. An asymptotic expansion of A (n,q) in
terms of a'”2 can now be derived:
A(na)=n*=2n*r'a"?[n/n.],_, +0@"). ()
We remark that, as a— o0, A (n,a) approaches the nth eigen-
value of H''. Thus the resonance equation (5), by itself, as-
ymptotically selects H ! from the one-dimensional' manifold
spanned by the self-adjoint extensions of the symmetric op-
erator obtained as the restriction of H, (or H,) to Z NP ' %
The phase-shift § in the eigenfunction in region III is
tand = k& "[tan(km) + k& '(n-/n)F (ka)'. (8)

From this follows that the phase-shift at resonance is §,,
= 7/2. Moreover

B k= k@) = 3 kG, ©)

which is a large positive number. This is in conformity with
the conventional definition of a resonance. The amplitude at
resonance is

a(k,y = y(k,)nk,)(sink,m)>. (109)

From Sec. 11, recall that for every zeC — [0, o0 ),
(z—H)'¢—(z— H_)'¢ for all p#”. We thus expect
(see VIIL.5.2 in Ref. 2) to have a “spectral concentration,”
expressing that the spectral measure of H, concentrates, as a
becomes large, in some neighborhoods of the eigenvalues n?
of H_'. We now want to compute the details of this concen-
tration, i.e., in physical terms, the asymptotic line shape as
a—ow.

Let us denote by { E (4 )|1€[0, )] the spectral family
of H,. Since H,, is spectrally absolutely continuous, there
exist positive, integrable functions f,(n,4 ) such that for ev-
ery real c and d:

d
b, E(led d,) = f dAf,(nA). (11)

The next theorem states the asymptotic properties of f,(n,-)
as ad-—oo.

Theorem I11.1: Let A (n,a) and {£,(n,")|a€[0, )} be de-
fined as above, and let

I'(n,a) =274 (n,a)**la — A (n,a)1"'n_[k, (@] (12)

Then f(n,A) = |#,(4 )|’ [see (4)], and the function g,(n,"),
defined on ( — w0, + o) by

g.(nh) = I (na)f (nA (na) + hl" (n,a)) (13)
converge as a— oo, pointwise and in .¥ !-norm to g(-) with
gh) = [m(1 + A"

Proof: The first assertion follows directly from (11).
Upon using (6), we rewrite (1) as

ak y/y(k )y = (sec’km)[k 2§ *n.2 — 2kE 0.2y F
+ (ak 0.2 + 929 )F] (14)

Since F[A (n,a),a] = 0and Fisa C ~ function in a neighbor-
hood of (n, « ), we have the Taylor expansion

F(k,a)
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= [A —A(na)]F,[A (na)al

+ 2714 - A (n,a)]*°F,;,(A,0)

= 2k )'F (k. (a),a)[ (n,a)h + 27°F,;(A,a)[ (n,ay’h?,
where we defined / by )

A =A(na) + hl (n,a). (16)
From (12), (14), and (15), we see that

I'(na)atk) =271 =24 (na)h + h*+ O (n,0)]}"",
a7

where
4 (n,a) = (n./1)a"k (a). (18)

Since for any fixed real , we can find a > 0 large enough so
that A = A (n,a) + I' (n,a)h > 0 we have, for such 4, that
I'(n,a) f(nA (n,a) + I (n,a)h)

approaches g(/ ) as a tends to infinity, pointwise in 4. On the
other hand, upon setting g (1,4 ) = O for

h< — A (n,a)/I" (n,a), we have

+ oc
j dhg(nh)= J dAf(nA)=1 for all a>0.(19)
— = (¢]

Since .#"'-norm of g is also 1, we have’ that g (n,-) converges
to g(+) in . '-norm. Q.E.D.

The theorem has two corollaries, both of which can be
obtained as in Ref. 9.

Corollary 111.2: For any h, < h, real:

lim (4,,E,[4 (n,a) + I (n,@)h,,A (n,a) + I (n,a)h,]¢,)

h,
= dh [7(1 + h?)] L
hy
This result gives the explicit form of the spectral concentra-
tion: For large a, the resonance approaches a Lorentzian,
centered around A (n,a), and of width I" (n,a) given by (12).

Corollary I11.3: For any 7>0:

lim (¢,,exp{ — i[H, — A (na)] (na)y'rid,)
= exp( — 7),

and the convergence is uniform in 0<7 < oc . Consequently,
the probability |(¢,.exp[ — iH I (n,a)"'7]$,)|* behaves as-
ymptotically as exp( — 27) when a— « . Upon reintroducing
the unscaled timet = I (n,a)™'7, we thus find that, for large a,
|($,,U(t),)|* behavesasexp[ — 21" (n,a)t ]. Inother words,
as we “lower” the barrier from an infinite to a finite but large
height, we can interpret [27(n,a)])" as the half-life of the
eigenmode ¢,. This confirms the usual relation between the
half-line width of a resonance and the half-life time of its
decay. The above calculation indeed shows in a precise man-
ner how the scaling in energy is inversely related to the scal-
ing in time. The rescaled time 7is of the order of I'(n,a) ", 1.e.,
a exp(a'?h ), which is very large; hence the decay of the ei-
genmodes indeed takes place very slowly; equivalently the
resonances are very sharp, with a very small linewidth.

At this point it is worth mentioning that since
a'’I" (n,a)—0 as a— w0, there is no contradiction between
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Theorem I1.1 and Theorem III.1 (or Corollaries II1.2 and
I11.3), thus bypassing the objection raised by Davies [com-
pare indeed these results with conditions (2) and (4)—~(7) in
Ref. 9].

A computation, similar to that carried above, can be
made for the off-diagonal elements of exp[ — iH,7/I" (n,a)]
in %", indicating that the eigenmode 7 not only decays, but
actually leaks out of region L.

IV. GENERALIZATION OF THE MODEL

The generalization consists in allowing 6—0 as a— oo,

i.e., more precisely: b = 0(a”) with v<0. If0>v> — 1 (or
a'*b— 0 as a— ), the construction and the proof of Theo-
rem 1.1 remain essentially unchanged. In this case however,
the concept of extended operator convergence® takes full
force and goes beyond the case studied in Ref. 6. Also
@AY (n,a)=A (n,a) — n* = —2n*r'aV? + O (a') while

[ (na)~8n'*mria' exp( — 2a'"*h ), showing that the haif-
width still is exponentially small compared to the shift, If
v= —1(ie, a?b—-f£>0), (44 )n,a) = —2n'r'a”?
cothB + O(a™') and I'(n,a)~2n*m"'a csc?B. If however
—4i>v> —1(i.e,ab=A—w asa—w), the resonance
equation (5.6) has no solution, and it should be modified to
read

G (k,a)=a"*F (k,a) = 0. (20)

This modified resonance equation has a unique solution
A(n,a) in the neighborhood of #%, and we have

(AA)(n,a)~ — 2n*7'A ", while I" (n,a)~2n°*mrA 7. In all
these cases, one has spectral concentration and decay in the
sense of Sec. I11. Moreover, upon using the estimates of Sec.
111, one proves again that exp( — iH t )f converges strongly
toexp( — iH 't )f asa— w0, for all fin #”. Finally, if v< — 1
(i.e., ab—finite, possibly zero, limit), none of the consider-
ations of Sec. I1I applies, and even the modified resonance
equation (20) fails to have a solution near »? in fact, in the
extreme case where b = O (a°?), H [resp.U (1 )] clearly con-
verges strongly to H, [resp. U(t }]: The wall has become com-
pletely transparent.

V. CONCLUSIONS

The model is nonperturbative by nature. Yet it is simple
enough to be exactly solvable, and to allow a precise control
of its asymptotic behavior as a approaches infinity. It is
moreover sophisticated enough to exhibit a host of interest-
ing features, both physical and mathematical, which we
briefly review on the basis of our analysis.

First of all, the model exhibits exponential decay, al-
though all the Hamiltonians occuring in the problem are
uniformly bounded below, namely by zero. This should be
contrasted with the situation encountered in nonequilibrium
statistical mechanics, where the presence of an infinite bath
at finite temperature allows the generator of the time-evolu-
tion to have Lebesgue spectrum, covering the whole real line
(for general arguments to this effect, as well as for models,
see for instance Refs. 10 and 11). The exponential decay
found in the present model emphasizes the role of the rescal-
ing in time, which allows to bypass the usual no-go theorems

1339 J. Math. Phys., Vol. 20, No. 7, July 1979

(e.g., 7.3.3 in Ref. 10) by the mechanism described in Sec.
II1. This mechanism appears to be quite different from that
occuring in the van Hove limit of statistical mechanics.'*"?

We might remark here that the exact asymptotic life-
time and width found in this model coincide with the value
found in the WK B approximation (see for instance Ref. 3); a
similar feature has been noticed also in Ref. 13. This coinci-
dence with the exact result, found by an unperturbative ap-
proach, seems to have a status similar to that of the Born
approximation in the master equation theory (see e.g., Ref.
12).

The decay found in the present model can be related to
the phenomenon known in physics as “weak quantization”
(see for instance p. 251 in Ref. 14, or pp. 403—408 in Ref. 15).
The physical picture is given a firm mathematical basis in
this model; we indeed saw that the point spectrum, encoun-
tered when the inside region I is decoupled from the outside
by an infinitely high hard wall, only persists, as the wall is
lowered, in the form of Lorentzian resonances: the higher
the wall, the sharper the resonances; still for any finite height
of the wall, the spectrum of the Hamiltonian remains abso-
lutely continuous with respect to Lebesgue measure. This
phenomena is also known in the mathematical literature
(e.g., Ref. 2) as “spectral concentration.” It should be, how-
ever, noticed that, for b = O(a*) withO>v> — 4, the spectral
concentration found in the present model is much stronger
than the usual concentration of polynomial type.®'¢

Whereas the present model describes very well the
qualitative features of the tunnel effect, its one-dimensional
character should be removed for a realistic theory of a-de-
cay. On the other hand, the model as it stands presents some
instructive analogy with the laser, its finite high wall playing
the role of a semitransparent mirror. Some of the qualitative
asymptotic features of the model are also found,'” upon using
the techniques of S-matrix theory, when the semitransparent
mirror is mimicked by a “6-function potential of strength
A”;in the latter case, the limit of large A plays the role of our
limit of large a. Incidentally, the form-sum H, + A4, can be
obtained as the form-limit, when ¢- o0, of H, with b = Aa™
(A5£0). When ab—0, one finds H, back. A true theory of the
laser would, however, require two modifications of the pre-
sent model. Firstly, the Maxwell equation, rather than the
Schrédinger equation for a massive particle, should be taken
as the starting point; secondly, a second-quantization, rather
than first-quantization, formalism should be used. Never-
theless, it seems likely that the phenomenon of “'weak quan-
tization,” or *“spectral concentration,” would persist in such
a complete theory, and that it could provide a useful basis for
its discussion.
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Representations of the Poincaré group are constructed from the relativistic harmonic oscillator wave

functions which have been effective in describing the physics of internal quark motions in the relativistic
quark model. These wave functions are solutions of the Lorentz-invariant harmonic oscillator differential
equation in the “cylindrical” coordinate system moving with the hadronic velocity in which the time-
separation variable is treated separately. This result enables us to assert that the hadronic mass spectrum

is generated by the internal quark level excitation, and that the hadronic spin is due to the internal
orbital angular momentum. An addendum relegated to PAPS contains discussions of detailed calculational
aspects of the Lorentz transformation, and of solutions of the oscillator equation which are diagonal in the
Casimir operators of the homogeneous Lorentz group. It is shown there that the representation of the

homogeneous Lorentz group consists of solutions of the oscillator partial differential equation in a
“spherical” coordinate system in which the Lorentz-invariant Minkowskian distance between the

constituent quarks is the radial variable.

I. INTRODUCTION

In building models of relativistic extended hadrons, we
have to keep in mind the fundamental fact that the overall
space—time symmetry structure is that of the Poincaré
group.' In our previous papers on physical applications of
the relativistic harmonic oscillator,? our primary purpose
was to devise a calculational scheme for explaining experi-
mental observations. As was pointed out by Biedenharn et
al.,’ the question of the Poincaré symmetry has not been
systematically discussed.

The purpose of the present paper is to address this sym-
metry problem. We are considering a model hadron consist-
ing of two spinless quarks bound together by a harmonic
oscillator potential. In this case, we are led to consider the
center-of-mass coordinate which specifies the space-time lo-
cation of the hadron, and the relative coordinate which
specifies the internal space—time separation between the
quarks.

Both the hadronic and internal coordinates are subject
to Poincaré transformations consisting of translations and
Lorentz transformations. The hadronic coordinate under-
goes Poincaré transformation in the usual manner. Howev-
er, the internal coordinate is invariant under translations.
This coordinate should, nonetheless, satisfy the Poincaré
symmetry as a whole. We discuss in this paper the role of this
internal coordinate, and show that internal excitations gen-
erate the hadronic mass spectrum, and that the internal an-
gular momentum corresponds to the spin of the hadron.

In Sec. 1I, we formulate the problem using a model ha-
dron consisting of two spinless quarks bound together by a
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harmonic oscillator potential of unit strength, and then dis-
cuss the generators of the Poincaré group applicable to the
entire system. In Sec. I11, we present the oscillator wave
functions which are diagonal in the invariant Casimir opera-
tors of the Poincaré group.

Il. FORMULATION OF THE PROBLEM

In our previous papers on physical applications of the
relativistic harmonic oscillators, we started with the follow-
ing Lorentz-invariant differential equation:

(2[00 +B:) — oo — %) + mif}é () =0, (1)

where x, and x, are the space-time coordinates for the two
spinless quarks bound together by a harmonic oscillator po-
tential with unit spring constant. In order to simplify the
above equation, let us define new coordinate variables

X=10+x) x=(1/2V2)x, — x). Q@)
The X coordinate represents the space—time specification of
the hadron as a whole, while the x variable measures the
relative space-time separation between the quarks. In terms
of these variables, Eq. (1) can be written as

e+ i(a‘j —x;)]as(x,x):o. 3)

ax,; 2

2
"

The above equation is separable in the X and x variables.
Thus we write

¢ (X,x) =f (X )(x), 4
where /(X ) and ¢(x) satisfy the following differential equa-
tions respectively:
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The differential equation of Eq. (5) is a Klein-Gordon equa-
tion, and its solutions are well known. /(X ) takes the form

JX)=exp(+ip-X), (7
with

pP=mi+@+1), 8
where p 1s the 4-momentum of the hadron. p? is, of course,
the mass of the hadron and is numerically constrained to
take the values allowed by Eq. (8). The separation constant 4
is determined from the solutions of the harmonic oscillator

differential equation of Eq. (6). The physical solutions of the
oscillator equation satisfy the subsidiary condition

plads(x) =0, )]
where
a =x,+ .
! " ox

The physics of this subsidiary condition has been extensively
discussed in the literature.”*

The space-time transformation of the total wave func-
tion of Eq. (4) is generated by the following ten generators of
the Poincaré group. The operators

. d
PH ==
ax+
generate space-time translations. Lorentz transformations,
which include boosts and rotations, are generated by

(10)

M;z\'zL;x'+L;1\" (11)
where
SR
ax ax#

Llu_zi(x#i —X, J )
ox” ox*

The translation operators P, act only on the hadronic
coordinate, and do not affect the internal coordinate. The
operators L ;\, and L, Lorentz-transform the hadronic and

internal coordinates respectively. The above ten generators
satisfy the commutation relations for the Poincaré group.

In order to consider irreducible representations of the
Poincaré group, we have to construct wave functions which
are diagonal in the invariant Casimir operators of the group,
which commute with all the generators of Egs. (10) and (11).
The Casimir operators in this case are

P'P, and W"W,, (12)
where

_ ’ 3
W, = €as P M.

i

Theeigenvalues of the above P 2and W ? represent respective-
ly the mass and spin of the hadron.
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lll. PHYSICAL WAVE FUNCTIONS AND
REPRESENTATIONS OF THE POINCARE
GROUP

In constructing wave functions diagonal in the Casimir
operators of the Poincaré group, we note first that the opera-
tor which acts on the wave function in the subsidiary condi-
tion of Eq. (9) commutes with these invariant operators:

[P pta] =0, (13)

[W?, pta)] =0. (14)
Therefore, the wave functions satisfying the condition of Eq.
(9) can be diagonal in the Casimir operators.

In order to obtain the solutions explicitly, let us assume
without loss of generality that the hadron moves along the z
direction with the velocity parameter 3. Then we are led to
consider the Lorentz frame where the hadron is at rest, and
the coordinate variables are given by

Y =y,
7 =(z—pt)/(1—-BH", (15)
1= —Bzy/(1 = BHY

The Lorentz-invariant oscillator equation of Eq. (6) is sep-
arable in the above variables. In terms of these primed varia-
bles, we can construct a complete set of wave functions

Yg(x) = fo (X)) £, 0N L2 fo (1), (16)
where

F@)y = (V 7 2mt) ™ \H (') exp( — 27/2),

Futy = (V 721 ~ V2 H,(¢) exp( — 17/2).

If the excitation numbers, b,...,k are allowed to take all possi-
ble nonnegative integer values, the solutions in Eq. (16) form
a complete set. However, the eigenvalues A takes the form

A=b+s+n—=k 17
Because the coefficient of & is negative in the above expres-

sion, A has no lower bound, and there is an infinite degener-
acy for a given value of 4.

x'=x,

In terms of the primed coordinates, the subsidiary con-
dition of Eq. (9) takes the simple form

-+
— 4+t x) =0. 18
(Z + 0 )up0 (s)
This limits f, (£ ") to fo(¢ ), and the eigenvalue A becomes
A=b+s+n, (19)

The physical wave functions satisfying the subsidiary condi-
tion of Eq. (9) or (18) have nonnegative values of A.

As far as the x', ', ' coordinates are concerned, they
form an orthogonal Euclidean space, and f,,(x"), £,("), £.(z")
form a complete set in this three-dimensional space. The
Hermite polynomials in these Cartesian wave functions can
then be combined to form the eigenfunctions of W2 which, in
terms of the primed coordinate variables, takes the form

W:=M¥LY, 20)

where

Kim, Noz, and Oh 1342



FIG. 1. Elliptic and hyper-
bolic localizations in space-
time. The wave functions in
the present paper are ellipti-
cally localized, and undergo
Lorentz deformation as the
hadron moves. The Lorentz
invariant form x"x,, to

. which we are accustomed, is
hyperbolically localized, and
is basically different from the
form used in the present

paper.

AN

HYPERBOLIC |t
> |
!

a
v : ’
L= —ieux] =
Ix;,

and M is the hadronic mass.

The physical wave functions now take the form

¥ x) = (1/m) " [exp( — t DR, ()Y, (0.8 "), (21)
where 1, ', ¢ ' are the radial and spherical variables in the
three-dimensional space spanned by x', y', z’. R ;,(*') is the
normalized radial wave function for the three-dimensional
isotropic harmonic oscillator, and its form is well known.
The above wave function is diagonal in W? for which the
eigenvalueis/ (/ + 1)M?, and /represents the total spin of the
hadron in the present case. The quantum number m corre-
sponds to the helicity.

Since the eigenvalue p? of the Casimir operator P’ is
constrained to take the numerical values allowed by Eq. (8),
the hadronic mass is given by

M>=mg+ @+ 1) 22)

If we relax the subsidiary condition of Eq. (18), we in-
deed obtain a complete set. In this case, A of Eq. (17) can
become negative for sufficiently large values of k. For A > 0,
the solutions become

v = [V 2] H () [expl( — 17/2)]

XR;  11(r)Y,,(6",¢"). (23)
For A <0, the solutions take the form

PRy = [V 7 2% D — a0l = 2l ¢

X [exp(— )R, (r)Y,,(0'8").  (24)
The eigenvalues of P? and W? are again m,’ + (1 4 1) and

I (I + 1)M ? respectively. In both of the above cases, k is al-
lowed to take all possible integer values.
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The functional forms of Egs. (23) and (24) are relatively
simple, and they suggest that this representation of the Poin-
caré group corresponds to the solution of the Lorentz-invar-
iant oscillator differential equation in a “cylindrical” coordi-
nate system moving with the hadronic velocity where the ¢’
variable is treated separately. We are then led to the question
of why this fact was not known.

Even though the above representations take simple
forms, the wave functions contain the following nonconven-
tional features. The first point to note is that they are written
asfunctions of the x’, ', z', t ' variables. The transverse varia-
bles x', y’ are simply x and y respectively. However, z’ and ¢’
are linear combinations of z and ¢. Because the physical
meaning of the time-separation variable was not clearly un-
derstood, the ¢ dependence discouraged us in the past from
using it explicitly in representation theory. The explicit use
of this variable in the present paper is based on the progress
that has been made in our physical understanding of this
time-separation variable in terms of measurable quantities,
and in terms of the relativistic wave functions carrying a
covariant probability interpretation.?

Another factor which used to discourage the use of the ¢
variable was that we are accustomed to its appearance
through the form

xXtx, =1~r, (25)
where
r=x*4+y + 2z

In terms of this form, it is very inconvenient, if not impossi-
ble, to describe functions which are localized in a finite
space-time region.

In contrast to the above hyperbolic case, the wave func-

tions which we constructed in this paper are well localized
within the region

@ +1t?)<2, (26)

due to the Gaussian factor appearing in the wave functions.
This elliptic form was obtained from the covariant
expression

—xtx, + 2xp/MY =x"+y? + 22+ 1" 27

The x' and y’ variables have been omitted in Eq. (26) because
they are trivial. In terms of z and ¢, the above inequality takes
the form

1—-p ,, 148 s
[1+B(z+t)+ L T (28)
We are therefore dealing with the function localized within
an elliptic region defined by this inequality, and can control
the 7 variable in the same manner as we do in the case of the
spatial variables appearing in nonrelativistic quantum me-
chanics. This localization property together with the hyper-
bolic case is illustrated in Fig. 1.

IV. CONCLUDING REMARKS

We have shown in this paper that the wave functions
used in our previous papers are diagonal in the Casimir oper-
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ators of the Poincaré group, which specify covariantly the
mass and total spin of the hadron. These wave functions are
well localized in a space—time region, and undergoes elliptic
Lorentz deformation.

An addendum to this paper containing a discussion of
Lorentz transformation of the physical wave function and a
construction of the representation of the homogeneous Lo-
rentz group is relegated to PAPS. It is shown there that
solutions of the oscillator equation diagonal in the Casimir
operators of the homogeneous Lorentz group are localized
within the Lorentz-invariant hyperbolic region illustrated in
Fig. 1.
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It is shown that an analytic spacetime with a bifurcate Killing horizon is locally
symmetric with respect to the axis of rotation. It is also shown that if the surface
gravity of a Killing horizon is a nonzero constant, then there exists a local prolongation
(extension) of the spacetime that contains a bifurcate Killing horizon.

The main result of this paper is a proof that if the sur-
face gravity of a Killing horizon is a nonzero constant, then
there exists a local prolongation (extension) of the spacetime
that contains a bifurcate Killing horizon. First, Killing vec-
tor fields are reviewed in Sec. 1. In Sec. 2, the existence of
canonical coordinates on a neighborhood of a zero of a Kill-
ing vector field is established. In Sec. 3, Killing horizons are
reviewed. The main result is proved in Sec. 4.

1. KILLING VECTOR FIELDS

Let (M,g) be a spacetime of class C © with signature
(+,+,+,—)for the Lorentz metric g. In some cases,
analyticity assumptions will be made. A vector field £ de-
fined on the manifold M or any open subset of M is a Killing
vector field if and only if the Lie derivative L, g is zero. The
Lie derivative of g with respect to a vector field £ is given by

LLms)=66me)) —e(l&mll) —gm (5D (D)
for arbitrary vector fields 7 and {. The Lie derivative of a
vector field % with respect to a vector field £ is given by
L, n = [£,7], the Lie bracket of § and %. For a given vector
field &, define a tensor field 4, of type (1,1) by

Am= —V,¢ 2
for arbitrary vector field 7. The pseudo-Riemannian connec-
tion is denoted by V. If £ vanishes at a point p in M, then 4,
evaluated at p is an endomorphism of the tangent space 7, M
which indicates how the local flow of £ is rotating around p.
The torsion tensor field T of the pseudo-Riemannian con-
nection V vanishes identically. Thus,

Tg)=V6—Vm—[n5]1=0 3)
for arbitrary vector fields % and £; and the tensor field 4
satisfies

A;=L, -V, “
The metric tensor field g is covariantly constant with respect
to V. Thus,

(Ve L) =£@ L)) —e(Ven ) —g(m,V:6)=0; (5)

and the Lie derivative (1) may be expressed in terms of 4, :

Le&Ms)= —8UME) — g, AL L) ©
Hence, £ is a Killing vector field if and only if 4, is skew
symmetric with respect to g.

Assume that £ is a Killing vector field. Let { U, | be the
local one-parameter group of isometries generated by £. The
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orbit of £ through a point ¢ in M is { U,(g)}. Some results of
Boyer' are rederived. Since 4, is skew symmetric,
§(8¢8)) =28(V. 6.6) = — 28(4,£,6) = 0. Thus,

Lemma 1: £ >=g(£,£) is constant on any orbit of £; the
one-dimensional orbits of £ can be classified as spacelike,
timelike or null according to the sign or vanishing of £ 2.
Also,

dé*(p) =n(g€.£)) =286V, £) = — 28(6.4.m)
=28(A:Em) = — 28(V &)
Hence,

Lemma 2: — 3d€> =£%0d, = (V,£) . If { is a vector
field, £ P is the 1-form defined by ¢ *(7) = g(£,) for arbi-
trary vector field . The notation ¢ is due to Abraham.?
Using Lemma 1,

(Ve dED) ) = £ (dE () — dE*(V )
=£MED) — (Vaé)E?
=[En)E2—(Vaé?= —(V,£)6°
= (Am)E? =dE*(Ag).

Thus,
Lemma 3: V. dé? = dE %A,

2. CANONICAL COORDINATES

Assume that £ is a Killing vector field which vanishes at
a point p in M but does not vanish identically on some open
neighborhood of p. Let { U, } be the local one-parameter
group of isometries generated by §. Then {L | ={(dU)) ,} is
a local one-parameter group of Lorentz transformations of
the tangent space 7, M and — A, (p) is the infinitesimal
generator of {L_ };i.e., (dL./d€)|._o = — A, (p).Since U,
maps geodesics into geodesics, there exist open neighbor-
hoods ¥ and W of p with U, (V) C W for sufficiently small
such that

U

€
V——Ww

exp ! exp !

TM——TM
L
is a commutative diagram. The exponential mapping® at p is

denoted by exp.
Let (e,,¢2.¢3,¢,) be an ordered basis of 7, M and let

€
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x',x? x* x*) be the normal coordinate system® on W with
respect to (¢;,e5,¢3,¢,). Then exp ~ '(g) = x*(q)e,, for g in W
(summation implied over repeated indices) or x*(g)

= [exp~ '(¢)]*, the uth component of the vector

exp  '(g)eT, M with respect to the ordered basis (e,e,,¢5,e,).
In this normal coordinate system, & = £#d/dx*. Forgin ¥V,

£'g) =@ [x"(Ud))/de)| . _,
= (d [exp = (Ud))/de)|. _

=(d [Ldexp  '(g)]"/de)|, _,
= (d [LAx"(g)e,)]"/de)|,
= x"(gdA* Jde)|, ..o

where (A #,) is the matrix representation of L, with respect
to the ordered basis (¢,,¢,,¢3,¢4). Since — A ( p) is the infini-
tesimal generator of L., (dA ¥, /de) |, _qe, = — A (p)e,.
This result is summarized in

Lemma 4: In a normal coordinate system (x',x?x* x*)
with origin at a zero of £, the components of & are given by
El=x"(dA*, /de)|, .

The type of the local one-parameter group of Lorentz
transformations {L_ | is characterized by two invariants

I,= — Jtrace(*4.( p)-4.( p))=2ux,

(M

I,= — itrace(4,(p)-A4.(p))=u’ — k.

The star is the duality operator. The classification of local
one-parameter groups of Lorentz transformations is repro-
duced in Table I from Ref. 1. Table I also classifies the fixed
points of { U, } or the zeros of £. The Killing vector field £ is
called an infinitesimal 4-screw, spacelike rotation, timelike
rotation or null rotation depending on the type of zero of £.
The invariants 4 and « are defined by (7) except for an over-
all sign.

For alocal one-parameter group { L. } of Lorentz trans-
formations, it is well known*® that there exists an orthonor-
mal basis (e,,e,.¢,,¢,) with signature ( +, +, 4+, — ) such
that

(A*)
cos(ue) sin(ue) 0 0
—sin(ue)  cos(ue) 0 0
- 0 0  cosh(k€) sinh(ke)
0 0 sinh(x€)  cosh(ke)

if L, is a 4-screw (ux=£0), spacelike rotation (xk = 0, u=~0) or
timelike rotation (u = 0, x20); and

TABLE 1. Classification of local one-parameter groups of Lorentz
transformations.

I, I Type of Lorentz transformation L,
#0 4-screw

0 >0 spacelike rotation

0 <0 timelike rotation

0 0 null rotation
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—
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aoom

9

if L_ is a null rotation.

In Riemann normal coordinates (x',x%x% x*)
= (x,0,2,t ) with respect to the orthonormal basis
(€1,62/€35€,),

J a a a

g_“(y ax xay) +K(taz “—a?) (10
if L, is a4-screw (ux5£0), spacelike rotation (k¢ = 0, u=~0) or
timelike rotation (u = 0, k5£0); and

d d d d

5 (yaz Zay) N (’ay +ya:) an
if L, is a null rotation. An infinitesimal null rotation is the
sum of an infinitesimal spacelike rotation and an infinites-
imal timelike rotation that do not commute.

Note that the zeros of £ are isolated only if L, is a 4-
screw. In the other cases, the axis of rotation (zeros of £ ) isa
totally geodesic two-dimensional submanifold of M and the
invariants u and « are constant on the axis of rotation. Any
coordinate system in which a Killing vector field £ is given
by (10) or (11) will be called a canonical coordinate system.
A canonical coordinate system is not necessarily a Riemann
normal coordinate system. The Riemann normal coordinate
system was used only to establish the existence of a canonical
form for £ on a neighborhood of a zero of £.

3. KILLING HORIZONS

A Killing horizon with respect to a Killing vector field £
is a null hypersurface K on which & is null. Assume K is a
Killing horizon with respect to a Killing vector field . Since

2=g(&,£ )is constant on K (zero, in fact), there exists a real-

valued differentiable function x on X such that
— 1d¢? = k£®. By Lemma 2, V. & = «£ on K. This implies
that the null orbits of £ on X are null geodesics. On K|
— 1V, dE? =V (k€") = (ER)ET + KV E"
=(EEY +K(V £) = (En)EP + «*E7. Also by Lemmas 2
and 3, — 4V, dé? = — 4dE%0A4, =ké oA,
= — I dé? = kK’£7 on K. Hence, £k = 0 and « is constant
on any null orbit of § on K.

Define £ (€) to be £ evaluated along an orbit { U, (g)}.
For ¢eK and «(g) = 0, £ (¢) is parallelly propagated on the
null orbit { U, (g)} and the group parameter € is an affine
parameter. For geK and «(q)520, e = ““£ (€) is parallelly
propagated on the null orbit { U, (g)} since D (e ~ ““€ (€))/de
Evg(e)(e CrE(@) = —ke  “E(e) te” Vet (€) =0
and u = "¢ is an affine parameter. Thus, a null orbit of £ on
K is geodesically incomplete if « is nonzero on the orbit.
These results, due to Boyer,! are summarized in

Lemma 5: There exists a real-valued differentiable
function x on K such that — 3dé°* =«&¥ = (V. £)" and
&k = 0. The null orbits of £ on K are null geodesics. The
function x is constant on any null orbit of £ on K and the orbit
is geodesically incomplete if « is nonzero.
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A Killing horizon K is said to be nondegenerate if and
only if k is nonzero on K. Hence, every null orbit on a nonde-
generate Killing horizon is geodesically incomplete.

4. BIFURCATE KILLING HORIZONS

If £ is an infinitesimal timelike rotation, then there are
four Killing horizons with respect to & that have the axis of
rotation as a common boundary.! The union of the four hori-
zons and the axis of rotation is called a bifurcate Killing
horizon. An analytic spacetime with a bifurcate Killing hori-
zon is locally symmetric with respect to the axis of rotation
in the following sense:

Theorem 1. If £ = t3/9z + z3/3t is an analytic Killing
vector field of an analytic spacetime, then (x,p,z,t )¥(x,p,

— 2z, —t)is an isometry.

Proof: The calculation is easier in coordinates
u=(t+2)/(2)"? and v = (¢ — z)/(2)"". In these coordi-
nates, £ = ud/du — vd/dv and U_(x,y,u,v)

= (x,p,ueve ~ ©). Let (x',x%,x*x*) = (x,y,u,v)and 1<i, j<2.
The fact that the metric components g,,, are analytic func-
tions and that U, is an isometry imply g,{x,p,u,v)

= gy X,)50), 834(X,p,1,0) = Z34(X,,uv), 8i3(X,y,u,0)

= vg",.3(x,y,uv), g,-4(x,y,u,v) = ugi4(xvy’uv)’ g33(x,y,u,u)

= v’§,,(x,y,uv), and g, (x,p,u,v) = 1§ 4(x,p,uv), where the
&, are analytic functions of three variables. It follows im-
mediately that (x,y,u,v) (x,y, — u, — v) is an isometry.

The theorem is not true if the analyticity assumption is
dropped. The metric given by

ds’ = dx? + dy* + fHz,t)[dZ? — dt?],
12)

1, when >z or t> —z.

fHzt) = {1 +expl —(Z—1tH) "2,
when t<z and t< —2z
is of class C * and & = ¢t 3/9z + z /3t is a Killing vector
field. The transformation (x,y,z,¢ )v(x,y, — z, — ¢ ) is not an
isometry.

Boyer' has shown that if an incomplete null geodesic
orbit of a Killing vector field £ on a Killing horizon X is
extendible, then K is a branch of a bifurcate Killing horizon
and £ is an infinitesimal timelike rotation. The axis of rota-
tion consists of limit points of the incomplete null orbits of £.
This implies that the « of Lemma 5 is constant on X since it
can be shown that its limit on the axis of rotation is equal to
the invariant « (or possibly — «) in (7). The main result of
this paper is to prove that if « is constant on K, then there
exists a local prolongation (extension) of the space—time that
contains a bifurcate Killing horizon.

Theorem 2: Let (M,g) be an analytic spacetime with
nondegenerate Killing horizon X with respect to an analytic
Killing vector field £. If « is a constant function on X, then
there exists an open submanifold U of M that intersects the
horizon K and an analytic prolongation of (U,g) that con-
tains a bifurcate Killing horizon.

Proof: By an application of the theorem that states that
a nonzero vector field can be represented locally as a coordi-
nate vector field,” there exists a coordinate system
(x',x*,x",x*) such that the Killing horizon X is given locally
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by x® = 0and & = 3/3x*. Let Ube the domain of the coordi-
nate system (x',x%,x>,x*). Since £ is a Killing vector field,
dg,,./9x* = 0. The range of the coordinate x *in U may not
be the whole real line. First, consider the prolongation of
(U,g) that extends the range of the coordinate x * to the
whole real line, if it is not so already. This local prolongation
may not be an open submanifold of M. Taub-NUT space, in
which the orbits of £ are closed, is such an example.’

Since £ is null on K, £ > = gu4(x',x%,0) = 0; and since K
is a null hypersurface g**(x*,x>,0) = 0. On
K, —1dE? =k, dE? = (38,/9x ) (x' x*,0) dx’ and
§ b= g14(x1’x2’0) dxl + g24(xl,x2’0) de + g34(x1:x2’0) d-x3-
Thus, g,,(x'x*,0) = g,4(x' x*,0) = 0. Since the metric g has
Lorentz signature, g,,(x',x*0)0. Thus,

- %(8g44/c9x3)(x',x2,0) = Kg34(xl:x2:0)' (13)

Now consider the coordinate transformation

x=x', p=xi u=e&", v=xde " (14)
with inverse

x'=x, xX*=y, X*=w, x*=«""lnu (15)

Then
ds’ =g, dx* dx" = g, (x,p,uv)(xu) = * du’

+ 23, (xpuv)(ku) ~ Nu dv + v du) du

+ 28,40y, uv)(icu) "dy du

+ 2g, (xpuv)(ku) " P dx du + -

= [Zaalepuv) k) ~ ' + 2g3,(x.p,uv) v]

X (ku) ' du® + . (16)
The transformation (14) maps the extended domain of
(x',x*,x*,x*) onto the half-space 4 > 0; and the terms omitted
in (16) are clearly analytic on the symmetric extension of the
half-space, (x,y,u,0)v»(x,y, — u, — v), including # = 0. The
term in brackets in (16) is also analytic on the symmetric

extension.
From (13),

lim [g44(xop,uv)(cu) = ' 2g34(x,puv) v]

= (0844/3x)(x,p,00 ~ ' v + 2834 (xp,0) v = 0.

Thus, the metric components in the (x,y,u,v) coordinate sys-
tem are analytic functions on the symmetric extension of the
half-space u > 0. It is easy to check that this prolongation of
(U.g) has Lorentz signature, even when « = 0. In this pro-
longation, & = «(ud/3u — v3d/dv)is an infinitesimal timelike
rotation. Canonical coordinates are given by
z=(u—-v)/(2)"?and t = (u + v)/(2)"

Remark 1: Theorem 2 is a generalization of previous
work on analytic extensions®’ that does not require the exis-
tence of special two-dimensional timelike submanifolds. In
Theorem 2, no local symmetry other than that generated by
¢ is assumed to exist and no field equations have been im-
posed on the metric. The Einstein field equations and the
dominant energy condition imply that « is a constant and « is
called the surface gravity of the horizon.®

Remark 2: Theorem 2 is a local theorem. Taub-NUT
space is an example of a spacetime that satisfies the hypoth-
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esis of Theorem 2 and yet there is no prolongation of Taub-
NUT space that contains a bifurcate Killing horizon.® The
reason for this is that the orbits of £ are closed. Thus, a global
version of Theorem 2 is not true. Theorem 2 implies that
there exists a local prolongation of Taub-NUT space that
contains a bifurcate Killing horizon. Such a local prolonga-
tion of Taub-NUT space has already been exhibited.’
Remark 3: The analyticity assumption in Theorem 2
was made in order to guarantee uniqueness of the local pro-
longation. If the analyticity assumption is dropped, the theo-
rem still goes through to yield a local symmetric prolonga-
tion that contains a bifurcate Killing horizon. However, in
the nonanalytic case, there also exist nonsymmetric prolon-
gations that contain a bifurcate Killing horizon. For exam-
ple, the Minkowski metric ds*> = dx* + dy* + dz* — dt* de-
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fined on the half-space > — z admits the analytic
(symmetric) prolongation to Minkowski space and the C =
(nonsymmetric) prolongation to metric (12).
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Decay of local correlations and absence of phase

transitions
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If the local truncated correlation functions of a system of statistical mechanics decay in a prescribed
manner the limiting pressure becomes differentiable with respect to the activity. Criterions of clustering of
the local truncated m -point correlation functions are shown to lead to a pressure being element of C" for

arbitrary n and m =1,..,n + 1.

1. INTRODUCTION

It is a well-known law of thermodynamics that the lo-
cal fluctuations (4n), of the local particle number n, be-
have for large n, like

(4n), 1
s Vn A
If this behavior is expressed in a rigorous inequality,
An ¢
(An), o<
Ma Vn A
for some small constant ¢ > 0, then for the infinite system the
pressure turns out to be a continuous function of the specific
volume p™'. It was proved by Ruelle for classical continuous

systems that (1.1) generally holds for a large class of
potentials.'?

(1.1)

Assuming the reversed inequality
(4n), C
— L —
A \/n A
for some large constant C > 0, we shall show that this de-
cay property for the local truncated two-point correlation
function (in the grand canonical ensemble) forces the pres-

sure of the infinite system to be differentiable with respect
to the activity.

(1.2)

The task of the following two sections is to give a rig-
orous proof and formulation of the connection of the limit-
ed growth of the local particle number fluctuations like
(1.2), and the absence of phase transitions. In Sec. 2 we
concentrate on simple differentiability, mainly using con-
vexity arguments, whereas in Sec. 3 we generalize to n-fold
differentiability for arbitrary n. For the infinite system, »-
fold differentiability of the pressure is interpreted accord-
ing to Ehrenfest as absence of a phase transition of the nth
kind.

We are not concerned in this article with a special
type of system of statistical mechanics. The results are
obligatory for all types of systems, classical and quantum
as well as lattice and continuous systems, provided the lo-
cal pressures exist, and the interaction is either stable! in
case of a continuous system, or an element of the usual
Banach space! for lattice systems. For lattice systems the
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term ‘“‘stable” used in the text has to be replaced by “ele-
ment of the Banach space,” and the constant B in an ap-
propriate way by the Banach space norm ||¢ ||. All nota-
tions and definitions used are based on Ref. 1.

2. PHASE TRANSITION OF FIRST ORDER

In this section we are concerned with the cluster
properties of the local truncated two-point correlation
function. For convenience and to elucidate the connection
of the derivatives of the pressure with respect to the chemi-
cal potential and the truncated correlation functions, we
treat classical continuous systems. The propositions are
also valid for other systems of statistical mechanics, in par-
ticular Proposition (2.1) without change and Proposition
(2.2) as a special case of Proposition (3.1).

Letp, be the pressure of a statistical system confined to
a bounded Lebesgue measurable set A CR ¥ with measure
|4 |, in the grand canonical ensemble. If ¢ denotes the chemi-
cal potential, B the inverse temperature, and p , , (x,,...,X;)
the local k-point correlation function for classical continu-
ous systems,' then p , €C * and

Bps _ R
¢’ 11|

1
+_j x)dx.
A | ApA,l( )

|| @usi) =10 0x

Proposition (2.1): If there exists k£ > 0 such that
FBpi
ac?

for a subnet A CR"” with A— oo and each £€R, and if the
thermodynamic limit lim, ,_p, = p exists, then p is a
strictly convex function of ¢ for each {eR.

Proof: Suppose there exist £,{,€R, {1754, and p is af-
fine for all £€[£,,4,], then p = (IBp/3¢ ) = po = const >0 ex-
ists. Since p; = (8Bp /() is monotone increasing and

converges to p, for §€[£,,¢,], one can choose € > 0 so small,
that €/(|§, — §\|) <k. p5 is a C~ function, and there exists
Ae{A|ACRY A—o ] and ££[£),45), such that

ap (&) _ €
9o 162 — &

>k>0

<k
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which contradicts our presupposition. Q.E.D.

A direct consequence of the strict convexity of the
pressure is the continuity of the pressure as a function of
the density in its domain of existence.

An example for classical continuous systems is given
by superstable, lower regular, and regular pair interac-
tions. It is an easy consequence of Ref. 2 and Proposition
(2.1) that the pressure is a strictly convex function of the
chemical potential.

Proposition (2.2): Let the thermodynamic limit

exist for (£,8)eDCR? with 8> 0 and a stable but arbitrary
interaction. Let p' ) (x,,...,x, ) be the local k-point correla-
tion function for the inverse temperature /3 and chemical
potential §; = (1 — A){, + A4, A€[0,1], such that for all
Ae[0,1] and all (8,£, )eD and for a subnet {A |ACR?,
A— o} we have

;/i f dij dx dy[p$)xy) — p$10p% 1)

<8(B,61,52) 2.1

with g(f3,-,-) being a continuous function of £, and &,. Then
p(-,B) is differentiable for each {€R with (3,{ )eD and there
is no phase transition of first order.

sup
A

Proof: The local pressure is differentiable with respect
to &, and for each §,,§26R each £€[f,5)), and &elluE)]
such that (3,£,)eD, (B,£,)eD we have

PR~ 2P,

fa G (el )

- §2|B l)

f ai [ (ptde

— PSP 0] dx dy + ——~f ‘MJP(A‘*KX) dX]

<K ¢,
with

—sup[

The interchanging of limits is justified by the stability of the
interaction and the application of the theorems of Lebesgue,
Fubini-Tonelli, and the Weierstrass majorization criterion.
pi(&.B) is a convex function of { with positive derivatives

(@ /3¢ Yp #&.B)>0. Letz> 0(£ = InZ), thenconvexity implies

BO L, @B

) dx< Ll
&AJP R A ins

=fBp,(In2z,8) — Bp ,(Inz,3)

<2zePE.
B denotes the stability lower bound, and p(z’ (x) is the local
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one-point correlation function for activity zZand inverse tem-
perature 3. Since g is a continuous function there exists a
constant G > 0 such that

K< maLX_ K@1,§2)<Ga

sgeléndl
and the local densities are uniformly Lipschitz; in particular
p£(0) is equicontinuous,

lpa(G1B) — pa€uB)I<G |6 — &

Convexity of the pressure as a function of £ implies that
(3 /3¢ W (&) converges to (3 /35 (S5 ) for each LeR\ Q,
where Qis at most a countably infinite subset of R [see Ref. 3,
Ref. 4 (Lemma I1I), Ref. 5. (Appendix A) for sequences and
Ref. 6 for generalized sequences]. Since R\ Q is dense in R
and the family ((3 /85 )p 5 ($.5)) ; - 18 equicontinuous be-
cause of (2.2), (d /35 Yp 1 (€.B) converges for each {eR. The
convex function p(-,5) possesses right and left derivatives at
each point {eR (see Ref. 7). Let 4 be a directed set. (§,, )ycs
with lim, | ¢, = {, denote a generalized sequence of
chemical potentials. For each generalized subsequence
(A )y Withlim, A, = oo it follows from (2.2) that

X-— 0 o

(2.2)

d
hrr; ‘(,EPA @ﬂ) JL"; agpA

= lim

T pA(s‘b’)

¢
So

Toeach £,eQ there exist generalized sequences (§, )yc 5
é‘GER’limaﬁwé‘a = §09 and (§{3 '){3 ‘eAs and gﬁ 'G]Rt
limg _, {4 = &, which approximate the right and left de-
rivatives of the pressure®:

Jim agpA @ﬁ)‘
Jim 05, 66) W:zp(gﬂ)]gl
The equation
N 3
a—gp@,b’)‘g’ﬂalgr;a;pA ,/:’)’
=A1erla—§pﬁ(§ B)!
= lxinw agpﬁ,,@,ﬁ) .
9-
Ep@’ﬁ)lg.

Q.ED.

An immediate consequence of Proposition (2.2) is the
continuity of the density as a function of the pressure p(p).
Since p is bounded by 4 e°¢?Z, and assuming that p({) is
everywhere differentiable, p(¢ ) is continuous for all {€R.

concludes the proof.
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The condition (5,£)eD places no serious restriction and shall
be omitted in this argument. If p5£0, the pressure is strictly
monotonic-increasing and continuous as a function of £. Let
&, be chosen such that p(§ ) > Oforall § > §,and p($) = Ofor
all £<&,, then p(&) is invertible for £ > {; and §(p) is even
differentiable. Thus p(p) is continuous.

3. PHASE TRANSITION OF ARBITRARY ORDER

In the theorem of this section a generalization of Propo-
sition (2.2) to an arbitrary degree of differentiability of the
pressure is obtained. This demonstrates the exclusion of
phase transitions of nth order, provided the first n + 1 trun-
cated local correlation functions decay sufficiently strongly.
This is expressed in Presupposition (3.1).

Proposition (3.1): Let fz:K—R with f,eC~(K,R) be a
generalized subsequence of f,C*(K,R) and K a compact
space. For n>1 and neN the following assumption shall be
satisified: To each k€N with 1<k<n + 1 we assume that

ak
ak
where g, is a continuous function on K foreach 1<k<n + 1,
and furthermore £, ({ ) converges pointwise to f({') for each
tek.

Then (@ * /3¢ ¥)f,(¢) converges uniformly to 3 (£ ) for
all 0<k<n [with (3°f, /98 %) =f, and f§ = f}and f3(¢)

= (d*/IE M () for each £eK. In particular feC (K, R).

fﬂ(;)kgk(;), 3.1

Proof: Let G, , = max g, (¢ ), then equicontinuity (or
ek
uniform Lipschitz continuity) holds for 0<k<n:

ak ak
aé_kfﬂ(é_l)*‘—o,‘g—[fﬁ(gl)‘<Gk+l,K|§1 -&l G2

for all £,,{,€K. Since we have
ak

Lk

the theorem of Arzela—Ascoli implies that there exists a sub-
sequence (9*/3X)f (¢ ) of (3% /3¢ *)f5(¢ ) which converges

pointwise to a function f7({ ) for all {eK. As a consequence

of (3.2), (8* /35 *)f,(& ) converges uniformly on K. Since £,

converges to f, it follows immediately by uniform conver-
gence of the (3 /9 *)f (&) for 0<k<n that

S =fiC) =" 1V ©).

fﬂ@). <Gk

Q.ED.
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In particular Proposition (3.1) holds if £, is the local
pressure, {€R the chemical potential, and K some interval
[¢1,62] depending on the temperature such that (8,4,)eD and

B.5)eD.

Corollary (3.2): In each system of statistical mechanics
with stable interactions for which the pressure converges
pointwise with respect to the chemical potential, it also con-
verges uniformly on each compact set. This is a consequence
of convexity.

In classical statistical mechanics of continuous systems
we meet the following illustrating cases. Let the potential be
a positive pair interaction, which decreases at infinity
weaker than 1/|x|” ~ ?, where veN is the dimension and
8> 0; the density and pressure is then zero. If it decreases
exactly like a/|x| ¥, then Presupposition (2.1) is fulfilled and
the absence of a phase transition of first order follows in the
region,

et < P,

because the pressure converges according to Ref. 2. € is the
(nonzero) density at low activities. [If the density is zero
everywhere, the relation is valid for arbitrary €.] If the poten-
tial decreases stronger than 1/|x[" ¥, then it is regular, and
the Kirkwood-Salsburg region and its extension for positive
potentials is known as the domain of analyticity of the pres-
sure. In this case the assumptions of Proposition (3.1) are
also fulfilled for arbitrary r, because there is at least a subnet
(3" /3¢ ¥)p 5(¢ ) that converges uniformly to the continuous
function (3% /3¢ “)p(£) for a compact interval [£,,£,] with
Gel8néal]-
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It is shown that the association of a linear eigenvalue problem for solutions of Einstein’s
equations admitting a two-parameter Abelian group of isometries can be extended to
Jordan’s five-dimensional, unified theory admitting three commuting Killing vectors.
The reduction to a two-dimensional problem, the derivation of infinitely many
conservation laws and the generation of one-parameter families of solutions can thereby

be transcribed almost literally.

Jordan’s! five-dimensional, unified theory canserveasa
first step towards a geometrical unification of gravitation
with other interactions. Thus one should try to learn as
much as possible about the structure and especially about
the solutions of this theory. To reach this aim, the easiest
approach could be a generalization of techniques which are
known within Einstein’s theory of gravitation.

For Einstein’s theory of gravitation admitting two com-
muting Killing vectors one of the authors? has recently con-
structed a linear eigenvalue problem similar to the ones
known for completely integrable systems. In this paper we
transcribe this construction to Jordan’s theory admitting
three commuting Killing vectors. We find that in spite of
increasing technical difficulties the generalization is
straightforward.

The derivation of the linear eigenvalue problem pro-
ceeds as in the four-dimensional theory. In Sec. 1 we reduce
the problem of finding solutions to Jordan’s equations with
three commuting Killing vectors to a two-dimensional one.
In Sec. 2 we make use of the existence of infinitely many
conservation laws to derive a symmetry transformation.
With the help of this transformation we construct a linear
eigenvalue problem in Sec. 3.

1. REDUCTION TO A TWO-DIMENSIONAL
PROBLEM

As in the case of four-dimensional Einstein space ad-
mitting two commuting Killing vectors, looking for solu-
tions of the five-dimensional generalization admitting a
three-parameter Abelian group G, can be reduced to a prob-
lem on a two-dimensional manifold S. To see this, we define
with the three commuting Killing vectors &, (i = 1,2,3) the
projection

*IIH =51 ARE R, (1.1)
(,v,+ = 1,...,5), where A ** is the inverse of the 3 X 3 matrix
A:}f\ Eg iugl‘\jggu" (12)

g,... 1 the metric tensor in five dimensions with signature
(+»+a+7*9+)'

(A) The Killing vector fields are all spacelike; hence
sgn(d) = (+,+,+)and sgn(h,) =(—, +).

(B) One of the Killing vector fields is time-like (station-
arity) and hence sgn(4,) = (+, +, — ) and sgn(#,,,)
=(+,+)

Whenever necessary we shall discuss the two cases sep-
arately referring to them as (A) and (B).

Because of R,,, = 0 the vector fields

Qljk;t—:-e;wxpo g ;' § ;Vpg (If (13)
are curl-free,

nijk [pv) = 07 (14)
and can thus be derived from potentials £2,;,

02,0, = 3,02 (1.5)

In order to be well defined on S, the 2, have to be
constant along the orbits of G, i.e.,

g;yﬁjkl =&k Ghlge = 0, (1.6)
which will be assumed from now on. For

‘Qi = e,uwcpo é’l{’é‘ ; § avpé‘? (17)
we now get

§,’“-ij1,1 = 6ijkﬂl (1.8)
and with Eq. (1.6)

2,=0. (1.9)
Because

3.402,=0 (1.10)

holds anyway, this is not an essential restriction.

For the covariant derivative of the Killing vector fields
we have

Vi = A Tt — A i €5 EH2 L
(1.11)
from which
V' A = 20" A A
— AR D — 2R £ L

The projection of g,,, defines a metric tensor 4, mni 2
(a,b. = 1,2) on S. Two cases have to be distinguished: (1.12)
1352 J. Math. Phys. 20(7), July 1979 0022-2488/79/071352-04$01.00 © 1979 American institute of Physics 1352



follows. With the formula
AR D
= — 2D“/1,.j/11"DM/{,k + 6(detd )12, 12,
Eq. (1.12) now reads
DD, Ay=DA;A"D, Ay — Y(det 1)'(D,det 1)D, A,

(1.13)

— (et )02, 2, — 2R, & FEY, (1.14)

where D, is the covariant derivative corresponding to the
metric h,,. Because of R,,, = 0 and the subsidiary condition
(1.9) we get
DA 'D,A)=0
with
r=|detd |.
Moreover, the Ricci tensor on S obeys the equation
R =1 Tr(A'D,D,A) — L Te(A "D, AL "D, A).
(1.17)

We thus obtain equations which are equal in form to the ones
of Einstein’s theory derived by Geroch.’

(1.15)

(1.16)

We now choose coordinates in which
hab = hnab
with

a=("g O) e,

=y %)

holds. In these special coordinates Eq. (1.15) decouples from
Eq. (1.17), and Eq. (1.17) can be easily integrated if we have
solved Eq. (1.15). That is why we study only Eq. (1.15) in the
following.

(1.18)
case (B),

2. THE GENERATION OF ONE-PARAMETER
FAMILIES OF SOLUTIONS

Up to the fact that 4 is a symmetric 3 X 3 matrix instead
of a 2 X2 matrix the equation of motion for A is the same in
Jordan’s theory as in Einstein’s theory. So one can conjec-
ture that the results can be taken over from the four-dimen-
sional theory if they are formulated for A. This is indeed the
case for the infinitely many conservation laws and the gen-
eration of one parameter families of solutions which we now
turn to.

Equation (1.15) is the first conserv?tion law or can be
read as the integrability condition for (d,=¢,,3°)
dw=Frld A (2.1

The different signs refer to cases (A) and (B) respectively.
Taking the trace, we get (0= — 1Trw)

do=+4d,r (.2)
Further potentials A, and w, can be defined recursively
Ry = — Aw,)FTIAA A, — Adw, + 20(0A,)
(2.3a)
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ow, .= FHTA'A,) — dww,FT°A 94, + 200w,

(2.3b)
with the initial data
=0, A=A wa= -1 o =0 (2.3¢)
The integrability conditions follow by induction.
With the generating functions
V(s) = io She U= 3 50, 2.4)
n= n=0
Eqgs. (2.3a) and (2.3b) read
sV (s) = — AU () FrdAd 1V '(s)
— AU (s) + 23(o'V (s)), (2.5a)
51U (5) = FHTPA W (5)) — o U (5)
F AV (s) + 200U (). (2.5b)
The ansatz
V(s) =f(s,7,AU(5) 2.6)
with

fls,70)= ?sl; {F1+ 250 + [(1 — 250)*F 45272}

@7
solves Eq. (2.5a) identically. Then putting
U'=(1F73)U (2.8)
Eq. (2.5b) yields
U’ = Y _(—15 - !
+ T (=A79A+7fA8A)U". (2.9)

In order to decouple these equations, we choose new
coordinates

1
=z :"2, p="% ;xz, case (A),  (2.10a)
§=x'+ixt, E=x'—ix?, case(B), (2.10b)
and get
.U’ = — (1 - 1/PA 9, AU, (2.11a)
3,U'= — 41 —pA9,AU", (2.11b)

where ¥ represents

_ 1+ _(1-2(0+ 1)\
14 1= of (1—-2s(0——1-)> , case(A), (2.12a)

_ 1—i7'f= 1 — 2s(o — ir)\!2
1+ (1 gy ir)) , case(B).(2.12b)

[If equations are equal in case (A) and (B) up to the substitu-

tion £ for 7 as Egs. (2.11) are, we only write down explicitly
case (A)].

_ Egs. 2.11) imply for normalized £ = + 74 and
U= (—s/f)"U’

3,0= — 40— 1/ 13,0, (2.13a)
3,U=—41-p»ig,Ii0. (2.13b)
Because of the normalization
Tr(1"'d4) = (det 2)'d detd = 0 (2.19)
holds and detU can be chosen equal to 1.
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Equations (2.11) and (2.13) are the direct generaliza-
tions of the analogous equations in Einstein’s theory and of
the still more special equations in the O(2,1) nonlinear o-
model.* Therefore, it is not surprising that one-parameter
families of solutions can also be obtained in a completely
analogous manner. We find that

A =0T A)AU$A), seR (2.15a)
and
0 (r(s) - ?/(S)”)ZT (2.15b)
451
solve
8,(TA 0, A) + 3,(rA 3, A) =0, (2.162)
d,3:7 =0. (2.16b)

If 4 and 7 solve Egs. (2.16) and U solves Egs. (2.13). Thus,
given a solution of Jordan’s equations with three commuting
Killing vectors, one obtains a one-parameter family of solu-
tions by applying the transformation (2.15).

The symmetry transformation has the further
properties

1

o - 1(95/1‘@): - [j—\[—laé,/fﬁ, (2.17a)
¢ ¥ ¢
PO 137,):("') _ ),[j-l,f-la” iU (2.17b)
and
— s 1 ~1
A9 lag,r(») - _7;2_ 719, (2.18a)
75— IanT(s) = P19, (2.18b)

which will be used to construct a linear eigenvalue problem
in the next paragraph.

3. FORMULATION OF THE LINEAR PROBLEM IN
TERMS OF SL(3,R) INVARIANTS
CONSTRUCTED FROM -1, AND 17,

Because writing down the eigenvalue problem would be
rather lengthy, we only show how to derive it. Starting from
A Ac.and A4, (4, = 3,4), we construct a basis for the Lie
algebra of SL(3,R) at every point of the manifold S (possibly
up to a lower dimensional manifold where the system is not
linearly independent, which we consider to be part of the
boundary of §'). For case (A) we take

nw=A", p=1"41,

=yl ye=1rily, 2]l
Ys=[lyu ]l e =[yulyuly, 20l
y=1rlyulye vl 3= [nl vl s 2011

For case (B) we get the real basis by taking real and imagi-
nary parts of (3.1). Because that does not change the essen-
tial features of the following discussion, which can be tran-
scribed easily for case (B), we treat only case (A).

3.1

From y, and y, invariants of the form Tr( 3 y4 y%---) can
be constructed. These invariants are certainly not indepen-
dent. Because they determine y, and y, only up to a
transformation
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»—R YR, y—R “w.R, (32)

the number of independent invariants is given by the mini-

mal number of independent matrix elements of R “'y,R and
R "'y,R with arbitrary R. That for n X n matrices this number
is n” — 1 can be seen as follows: In the general case the char-
acteristic polynomial of y, has n simple roots. Hence, y, can
be transformed to diagonal form with, because of Try, = 0,
n — | independent matrix elements. R is determined up to a
factor whichisirrelevantfor R “'y,R and R “'y,R and uptothe
relative normalization of the eigenvectors of y, which are the
columns of R, with respect to one eigenvector. Therefore,

n — 1 constraints can be imposed on the matrix elements of
R "'y;R. Because of Try, = 0 the minimal number of indepen-
dent matrix elements of R 'y,R and R “'y,R is finally n* — 1.

For 3< 3 matrices we can take the following complete
set of invariants:

A, =Ty}, A,=Tr3, A=Tyy, A =Ty,
(3.3)
As=Try], A,=Twty, A4,=Tiy ¥ A,=To?y

To express the other invariants explicitly in terms of these,
one simply uses the fact that

yi= ATy, + 5Ty, (1=1.2) (3.4)

holds. [The first three invariants (3.3) are those which were
called 24 %, 2B ? and 248 cosa in the Einstein case.]

On the linear space sl(3,R) a scalar product invariant
under the adjoint representation of sl(3,R) is defined by

X, X)=TrX, X,, X, esl(3,R). 3.5)
Because this scalar product has the signature
(+ 4+ + + + — — —) corresponding to the fact that

there are five independent symmetric and three antisymme-
tric elements of sl(3,R),

7= (3.6)

—1

is a pseudometric on sl(3,R). According to 7 the basis y, can
be orthonormalized using Schmidt’s orthonormalizing pro-
cedure. This yields

z;= by yy
with
(22} =4 (3.8)

and b, which are known functions of the invariants through
their dependence on the @, = (y, p )

(3.7)

The next step is to express y, , and y, . again through y,,
Yoy=TWyi pie=T%ye (3.9)
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using the equation of motion (2.16a) forA.Thatl"VandI"'®
depend only on the invariants (3.3) and their first derivatives
can be seen as follows: A en /1,7,7, and 4, ¢¢ can be written as a
linear combination of the basis elements in the space of sym-
metric 3 X 3 matrices

x -—(/1,/l§,i ,Ag l/lg,/lg 14 ,/{ A7 H) (3.10)
The coefficients are functions of the invariants (3.3) and
their first derivatives only. For Eq. (2.16a) holds and the

coefficients for /f,m and A, ¢ can be determined with help of
the equations

Tex, A, = C} TX, x,, (3.11a)
Tex; Age = C 1 Trx; Xy, (3.11b)
with X, defined by
F=E T T A AT, A AT AT,
A T Ay A AT, A A, AT (3.12)

and Trx, /l,m,Trx A ¢e 11X, x, being functions of the invar-
iants and their first derivatives. The same statement con-
cerning the expansion coefficients is true for matrices like
/l— i "I A “/l_ which are built with more than three A ’s.
ThlS ylelds that Yy and y; . can be written as linear combina-
tions of matrices A A, e ,/1 ‘/1 A ‘/1 A "ﬂ ., which can be
combined to y;’s because y; , and Vig are elements of s1(3,R).
The coefficients I';, are therefore functions of the invariants
(3.3) and their first derivatives.

From Eq. (3.7) and (3.9) we get (b ¥'b,,, = 6*,)

2 = (b b "™ + byl 6"z, =C, 2, (3.13a)
and

2= by b km by @b ™z, =Cy"z,,,. (3.13b)
As the C;.™ are functions of the invariants and their first

derivatives, the compatibility condition of these equations
yields the equations of motion for the invariants 4,,...,4,
which turn out to be second order differential equations.

Because of (z,z,) = 1, one has
Cy=79CI=0. 3.19)

Hence the matrices C, are elements of the vector representa-
tion of the lie algebra so(5,3). Because differention is a deri-
vation and sl(3,R) is semisimple, they are at the same time
elements of the adjoint representation of sl(3,R), i.e.,
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Czkf-‘:w'jf‘kg

holds where f «  are the structure constants of sl(3,R).

(3.15)

We can now put ¢; = w,’Q; with Q, which are the basis
of the vector representation of sl(3,R) corresponding to the
representation matrices (Qj)k’ =fix 'in the adjont represen-
tation. The equations

Y,=ch Ye=cy (YeR’) (3.16)

are then a possible form of the linear problem to be con-
structed. The eigenvalue problem can be obtained at once if
we construct ¢, , using 4 © and 7 instead of 4 and 7. Be-
cause of Eqs. (2.17) and (2.18) the invariants’ 7 and the =
derivatives change only by factors depending on ¥ in which
the “eigenvalue” s is hidden. Thus, the matrices ¢, and ¢,
depend on s,0,7and the invariants constructed from A.Ifone
could solve the inverse scattering problem, one would get the
matrices ¢, , and especially 7. We conjecture that each triple
¥, th, ¥ of independent solutions which, because of

Trc, ; = 0, can be invariantly normalized to detr = 1
[r=(t,,¥,1¥1»)], yields A by the formula A = »7r. If this con-
jecture, which holds in the Einstein case, is not true, we get
the z;’s from the O(5,3) representation of r, from z; we get
i "/l and A- /lg, and by integration 4.

A different form of the linear eigenvalue problem is pro-
vided by the spinor representation of the ¢;’s considered as
elements of SO(5,3). No matter how, a linear eigenvalue
problem can be constructed in the case of a five-dimensional
theory, too, and we conjecture that this is true even in higher
dimensions. However, in higher dimensions the interesting
case is the one with noncommuting Killing vectors.® Thus,
one has to study a theory with this property, and it is not yet
clear whether some of the results we obtained survive in spite
of the additional difficulties.

ACKNOWLEDGMENT

We are indebted to P. Breitenlohner for clarifying
discussions.

'P. Jordan, Schwerkraft und Weltall (Vieweg, Braunschweig, 1955).
!D. Maison, preprint MPI-PAE/PTh 14/78, April 1978.

‘R. Geroch, J. Math. Phys. 13, 394 (1972).

‘M. Ltischer and K. Pohlmeyer, Nucl. Phys. B 137, 46 (1978).
*Y.M. Cho, and P.S. Yang, Phys. Rev. D 12, 3789 (1975).

J. Burzlaff and D. Maison 1355



Repulsive and attractive timelike singularities in vacuum

cosmologies
Bonnie D. Miller

Department of Mathematics and Department of Astronomy and Astrophysics, Michigan State University

(Received 31 October 1978)

Spherically symmetric cosmologies whose big bang is partially spacelike and partially
timelike are constrained to occur only in the presence of certain types of matter, and in
such cosmologies the timelike part of the big bang is a negative-mass singularity. In this
paper examples are given of cylindrically symmetric cosmologies whose big bang is
partially spacelike and partially timelike. These cosmologies are vacuum. In some of
them, the timelike part of the big bang is clearly a (generalized) negative-mass
singularity, while in others it is a (generalized) positive-mass singularity.

I. INTRODUCTION

Among the solutions to Einstein’s equations which are
generally regarded as “cosmological,” most exhibit an initial
singularity, i.e., a big bang, which behaves as the source of all
matter and information in the spacetime. In the (spatially)
homogeneous isotropic Friedmann solutions, as well as in
many inhomogeneous cosmologies, the big bang is spacelike,
so that none of its points are to the future of any point in
spacetime. Inhomogeneous cosmologies, however, also al-
low the possibility that the big bang is partially spacelike and
partially timelike,' so that some of its points are subject to
influence (as well as observation) from within the spacetime.
We will use the term “mixed” to denote such a big bang.
When the big bang is mixed, the spacetime has no Cauchy
surface, or, equivalently, it is not globally hyperbolic. (Thus,
the spacetime does not obey the stronger formulations of the
cosmic censorship hypothesis.?) ’

When the big bang is mixed in a spherically symmetric
cosmology,’ its timelike segment has a negative mass associ-
ated with it. The occurrence of a negative-mass segment of
the big bang introduces a number of distinctive features into
spherically symmetric cosmologies (even aside from the
prospect of being able to interact causally with a singularity),
and the primary purpose of this paper is to point out that
analogous phenomena occur in cosmologies with other sym-
metries. In fact, these phenomena occur more readily in cos-
mologies whose symmetry is weaker than spherical symme-
try, in the following sense: They can occur in vacuum,
whereas in the spherically symmetric case, not only the pres-
ence of matter but also restrictions on the type of matter are
required if the big bang is to be mixed.

In Sec. I1, we review briefly the known examples of
spherically symmetric cosmologies whose big bang is mixed,
and we note that there are plane symmetric cosmologies
which are closely analogous to them. In particular, that part
of the big bang which is timelike, in the plane symmetric
cosmologies, is also repulsive, i.e., although null geodesics
(both past-directed and future-directed) terminate on it,
timelike geodesics do not.

In Sec. 111, we exhibit a one-parameter family of cylin-
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drically symmetric vacuum cosmologies in which the big
bang is mixed. The timelike part of the big bang is repulsive
when the parameter has a negative value, but it is attractive
when the parameter has a positive value. The situation in
which it is attractive is probably unstable; this is suggested
by a simple interpretation of the solutions.

1. SPHERICALLY SYMMETRIC AND PLANE
SYMMETRIC COSMOLOGIES
A. The spherically symmetric case

In spherically symmetric spacetimes, the function m,
called mass, is defined by |VR |2 = 1 — 2m/R, where R is the
geometrically defined areal coordinate. Mass is a constant
only in vacuum; if matter is present, m has nonzero deriva-
tives, which are determined by the matter variables.

While Schwarzschild coordinates (R,T") do not ade-
quately describe a hypersurface on which R = 2m, on one
side of which VR is a spacelike vector and on the other side
timelike, there may be other coordinate systems which are
appropriate for describing the entire spacetime. For in-
stance, in perfect fluid spacetimes, it is convenient to use
comoving coordinates. Or if one is discussing Vaidya solu-
tions*—spherically symmetric spacetimes whose stress-en-
ergy tensor is that of radially outflowing photons—it is con-
venient to use Eddington—Finkelstein coordinates (R,u),
where u is an outgoing null coordinate. In these coordinates,
the metric for the Vaidya solutions is

ds? = — [1 - _2_’7%341] du* — 2du dR

+ R*¥d6? + sin*0 de ?), 0
where the mass m(u) is an arbitrary decreasing function of u.

Spherically symmetric cosmologies in which the big
bang is mixed have been described in detail by Miller'; the
following is a summary of their properties, in the known
examples, which are illustrated schematically in Fig. 1.

(1) Mass changes sign on a hypersurface in spacetime,
being negative at points on the side near the timelike segment
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R=0
Y m<0

) =

FIG. 1. A spherically symmetric cosmology with a mixed big bang. Matter
is being emitted, as the mass of the singularity drops through zero, and the
singularity is changing in character from spacelike to timelike.

of the singularity. At these points, spacetime has the local
properties of the negative-mass Schwarzschild solution.
(For instance, photons are blue shifted as they travel out-
ward.) The function m, defined originally within the space-
time, extends by continuity to the singularity, and it is nega-
tive on the timelike points of the singularity.

(2) The negative-mass segment of the singularity is spa-
tially a point. That is, for each of the naturally defined
T = constant spacelike hypersurfaces, there is one point on
the causal boundary.’

(3) The singularity is emitting matter, as it shifts from
being spacelike to timelike and its mass drops through zero.
The matter cannot be dust; it can be either photons (in the
case of a Vaidya solution) or a stiff ( p = €) perfect fluid (in
the case of the Taub—Cahill® self-similar solutions). We note
that while there are no known examples in which 0 <p <€,
there is no reason to think that such examples do not occur.

That matter variables should be necessary in order for a
positive-mass singularity to (unpredictably)’ develop into a
negative-mass singularity, is a simple consequence of the
Birkhoff theorem, which severely constrains the behavior of
spherically symmetric vacuum solutions to the field equa-
tions. Any such solution, the theorem states, is determined
by a single constant, m; the sign of that constant then deter-
mines that the singularity at R = 0 is either spacelike (if
m > 0) or timelike (if m < 0). In order for the big bang to be
mixed in a spherically symmetric cosmology, then, it is nec-
essary that there be more variables in the field equations than
occur in vacuum.

B. The plane symmetric case

The term ““plane symmetric” has been used in different
ways to characterize solutions to Einstein’s equations; in this
paper we use the term to refer to spacetimes whose isometry
group is that of the two-dimensional Euclidean plane. Such
spacetimes have been studied extensively by Taub and his
co-workers,® who emphasize that they bear a strong formal
resemblance to spherically symmetric spacetimes and that,
in particular, they allow a locally defined masslike function.

The metric on the Euclidean 2-planes may be written
p(dx* 4 dy*), where p is a function only of the two coordi-
nates orthogonal to x and y. (If Vp5£0, p is a natural choice
for one of these two coordinates.) The function p clearly
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plays a role similar to that of R in spherically symmetric
spacetimes, but there are some notable geometrical and for-
mal differences, most of them in essence restatements of the
fact that the flat-space limit of | Vp|? is O (since Vp=0), while
that of |VR |?is 1.

In vacuum, the behavior of plane symmetric spacetimes
is extremely limited, as it is in spherically symmetric space-
times, for the same reason: a Birkhoff theorem.® The vacuum
metric may be written in such a way as to emphasize the
resemblance to the Schwarzschild metric'®:

w=- (—2:_)41‘1’0 Z+(_2pﬁ) dT* + pidx’ +dy’), ()

where 4 is a constant. Note that |Vp|*= — 2u/p. If u >0,
then Vp is timelike, and the spacetime is cosmological, with a
spacelike singularity at p = 0. If u <0, then Vp is spacelike,
and the spacetime is static. In this case the singularity at

p = 0is much like the negative-mass Schwarzschild singu-
larity: It is timelike and repulsive. However, rather than be-
ing a single point in space, the singularity is, in Taub’s ter-
minology, a “‘big wall”’: At fixed 7, there is a point on the
causal boundary for each point (x,p) in the Euclidean plane.

If there is matter present in the spacetime, we can define
a function whose vacuum limit is the constant 2. We write

Vpli=— 2, ©)
p

where u is now a function of position; Eq. (3) is the analog to
the equation |VR |> = 1 — 2m/R, which occurs in spherical
symmetry. Further considerations of the field equations for
plane symmetric spacetimes continue to indicate that u is
reasonably referred to as the analog to m.

As aspecific example, consider plane symmetric perfect
fluid solutions. The metric in comoving coordinates is

ds’ = — e dt? + e*¥ dz* + p¥dx* + dy). 4)
In these coordinates, Eq. (3) takes the form

_ 2 ey, ©)
p
where U=e ~¥dp/dtand I =e ~ “dp/3z. [Taub has
stressed that Eq. (5) actually arises as an integral of the field
equations, as does its analog in spherical symmetry.] Then
the field equations show that

I . 9p
= — 6
% L (6)
and
Iy : 9P
- =€P°—, 7
Jz P Jz @

where p and € are the pressure and energy density, respec-

tively. Equations (6) and (7) are formally identical to their
analogs in spherical symmetry, which are the equations for
the derivatives of mass.

While the function u is thus evidently a close formal
analog to m, there are significant differences in the conclu-
sions to be drawn from the signs of the two functions. One
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sees from Eq. (3) that Vp changes from being spacelike to
being timelike on a hypersurface in spacetime on which g
changes sign, whereas the analogous transition in spherical
symmetry takes place when R = 2m > 0.

In a cosmological spacetime, u changing sign on a hy-
persurface indicates that the singularity p = 0 changes from
being spacelike to being timelike, at its intersection with that
hypersurface. The timelike part of the singularity then has
properties similar to those found in the vacuum “negative
mass,” i.e., u < 0) limit: it is repulsive, and is spatially a wall,
rather than a point.

Examples of plane symmetric cosmologies in which the
big bang is mixed, can be found readily by means entirely
analogous to those which yield the spherically symmetric
examples. In particular, it may be verified that the proce-
dures of Taub and Cahill for constructing spherically sym-
metric self-similar spacetimes containing a stiff perfect fluid,
lead also in the case of plane symmetry to a solution space
which includes cosmologies with a mixed big bang. (As usu-
al, the conditions imposed on these solutions, that the space-
time be self-similar and the perfect fluid be stiff, are made
simply to simplify the field equations.)

A second class of plane symmetric cosmologies with
mixed big bang is the class analogous to the Vaidya solutions
which occur in spherical symmetry. The metric (which may
be found by straightforward integration of the field equa-
tions) is

dst = Y g 2dy dp 4 pidx + ay?), ®)
p
where again, u is an outgoing null coordinate, and u is an
arbitrary decreasing function of u, which passes through 0.
The energy-momentum tensor has a single nonvanishing co-
variant component, T, = — 2(du/du) p™.

We summarize this section by saying that there exist
plane symmetric cosmologies whose big bang is mixed, and
that the properties of these cosmologies are, for the most
part, the same as those seen in the spherically symmetric
case. In particular, the timelike part of the singularity is re-
pulsive, and the singularity is necessarily emitting matter—
of a type which moves along null geodesics or accelerated
timelike curves—as it shifts from being spacelike to being
timelike. Figure 1, which illustrates the spherically symmet-
ric case, may also be interpreted as an illustration of the
plane symmetric case, if one substitutes ¢ and p for m and R,
respectively.

lIt. CYLINDRICALLY SYMMETRIC
COSMOLOGIES

The metric for cylindrically symmetric spacetimes can
be written

dst = — &7~V dt? — dr) + 2V dz* + ate ~*V dB?,

)

where ¥,¥, and a are functions of » and ¢. The function
a=|d,||0e| is closely analogous to R and p; in particular, the

singularity in a vacuum solution isat & = 0. At present, none
of the scalar functions which have been defined in cylindri-
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cally symmetric spacetimes, appears to be a fully satisfactory
analogue to m and u. (Thorne’s “C-energy” scalar''* for
instance, which in some respects closely parallels m and g,
does not distinguish the presence of a repulsive singularity
from that of an attractive singularity.)

Because of the additional freedom which they give to
the field equations (as compared to spherically symmetric or
plane symmetric solutions), cylindrically symmetric solu-
tions have been a primary source of information on those
general relativistic phenomena which can only occur under
sufficiently asymmetrical circumstances—notably phenom-
ena involving gravitational radiation," but also others, such
as highly nonspherical gravitational collapse'*™ and the de-
velopment of inhomogeneities in cosmology.”* And while cy-
lindrically symmetric spacetimes are, as such, physically un-
realistic, one may suppose that many of the interesting
phenomena which they allow do not depend critically for
their existence on the existence of an infinite source.
Thorne' has provided some evidence for this supposition by
showing that there are asymptotically flat solutions to the
field equations in which the (bounded) source is a ring singu-
larity, and which are locally—as one approaches the singu-
larity—cylindrically symmetric.

When Va is spacelike, then coordinate transformations
allow one to choose the coordinate r in Eq. (9) so that » = a.
A singularity at » = ¢ = Ois then timelike. The vacuum field
equations in this case reduce to

Fv oY 19 _,

v (102)
a: a  r o

I _ (10b)
o ar

TR @

Solutions to these equations include the Einstein—Rosen
waves, and, in the static limit, the Levi—Civita solutions.

The Levi-Civita solutions, which are described in detail
by Thorne,'! are given in his notation by ¥ = — 2k In(r/7,)
and y = 4k * In(#/r,), where k and r, are constants. There are
distinct classes (aside from the locally flat solutions which
occur when k = — 0, or «) among these solutions. If
k < — 1, then the proper circumference C = 2mre ~ ¥ of cyl-
inders varies inversely with 7, so the singularity is ap-
proached by letting C—co. If — 1<k <Oo0rO0<k <o, C
varies directly with #, so the singularity lies along the z-axis,
C = 0;if — § <k <0, the singularity is repulsive, while if
0 < k < =, the singularity is attractive.

In the case when Ve is timelike,'” coordinate transfor-
mations allow one to choose the coordinate ¢ in Eq. (9) so
that t = . The singularity at ¢ = a = 0 is then spacelike.
The field equations in vacuum are formally the same as Eqs.
(10), but with the roles of r and ¢ interchanged:

v W 1K _,

el 11a
or? gt? t ot (1)
9 _ 5 9 9 (11b)
or Jt or
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No general considerations such as a Birkhoff theorem
preclude the existence in vacuum of spacetimes in which the
singular locus @ = 0is partially timelike and partially space-
like. Thus, one might expect to find cylindrically symmetric
vacuum cosmologies with a mixed big bang. If this should
occur, a convenient global coordinate system would be
(a,u,z,0), where u is an appropriate label for outgoing nuil
rays; the metric would take the form

ds’ = 2g,.duda + g, du? + *Vdz* + a’e > dg*.
(12
In these coordinates, |Va|? is given by |Va|* = g **

= — g../8 " sothat the critical hypersurface, on which Va
is null, is that on which g, = 0.

One way of finding solutions with these properties is to
look for solutions to Egs. (10) which exhibit an appropriate
type of incompleteness—namely, which show |Va|>—0 (so
that the coordinate system in which » = a is becoming ill-
behaved) as one approaches a hypersurface which is appar-
ently well-behaved geometrically—and then extending these
solutions to include the hypersurface on which |Va|? = 0, as
well as the region in which Ve is timelike. Thus we proceed
by looking for a solution to Eq. (10a) of the form ¥ = (w),
where w=id/r and i=¢ — r. When we assume that ¢ de-
pends only on w, Eq. (10a) becomes

w+200 %Y L w2 —o, 13)
duw? dw

The solution to Eq. (13) is
¥ =2cInf{(w+2)"* + w)'"?)

:cln(w), (14)

r

where ¢ is an arbitrary constant, and an arbitrary additive
constant has been set equal to zero. Integration of Egs. (10b)
and (10c) then gives

y=cln——, (15)

t 2 __ r 2
if we ignore another additive constant.

In the coordinates (a,#,z,0 ), the metric takes the form!'®
ds? = — " " IQdi da + diit) + e*V d2* + ate ¥ dB?

B — & Qi da + di)
498 + 200)*[d + @ + (@ + a@)?)*

= =2 =127 \2¢
+(Z[u-}-a+(u + 2da) ]) dz
a

a20+2d92

12[d + a + @ + 2da)”]}>

(16)
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Aslong as @ > 0, i.e., as long as ¢ > r, the metric form
(16) is well-behaved. As #—0, however, |Va|* — 0,i.e., Vais
becoming null, while g;;— — « and g;,— — .

Two different types of cosmological solutions are de-
scribed by the family of metrics (16); for purposes of illus-
trating them simply we restrict attention now to the cases
¢ =14 and ¢ = — 4. (For other choices of ¢ in the ranges
O<c<1/(2)"?or — 1/(2)"? <c <0, the discussion would
be essentially the same, depending only on the sign of ¢, but
the extension of the spacetime across the hypersurface on
which Va is null would not be as smooth, and the analysis of
the geodesic equations not as simple. We ignore the cases
c>1/(2)%and c < — 1/(2)"/?, as well as the case ¢ = 0.) In
both cases, we make the coordinate transformation u = 7'
In the case ¢ = 1, the metric becomes

. — 2a¥*du da + u dv?)
(uZ _+_ 2a)1/2[u2 _+_a + (u4 + 2au2)l/2]

2 4 2y172
+2(u +a+ (4 2au?) )d22
a

1 o do’ |
2 [wr+a+ @+ 2au?)?]’

a7

in the case c = — 1, the metric becomes

— 8[u + a + (u* + 2au?)'’]
al/l(uz _+_ Za)llz

ds’ =

(du da + u du?)

" 1 a dz?
2 [u?+ a+ (@ + 2au?)'?]

+ 2a[w? + a + (u* + 2a u?)'?] dE>. (18)

The metrics (17) and (18) are both well-behaved as |Va/|?
passes through zero, on the hypersurface ¥ = 0, and they are
complete. In the region u > 0 (i.e., & > 0), Va is spacelike, and
in the region u <0, Va is timelike. The big bang, at @ = 0, is
thus mixed, in these vacuum cosmologies.

To determine the repulsive or attractive character of the
timelike part of the big bang, we consider timelike geodesics
in the region u > 0. From the metric form (9), witha = #, one
finds the r-component of the geodesic equations to be

e FR -l R -

LML WYy w2
— — Z) Pt 47 ZEpP2, (19
* r r ar o e ar (19)

where Py =r’¢ ~ Y d8 /ds and P, =e *¥ dz/ds are the two
conserved momenta. From the condition ugu” = — 1
obeyed by the tangent vector u to a geodesic, one has also the
relation

ez(yw)[(gﬁ)z _ (31)2] e Wp2_ f;sz 1. (20)
AY AY
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Our concern here is simply whether or not the geodesics
actually reach the singularity at » = 0, so we look at Eq. (19)
under the condition r<t. When r<¢, ¥ and ¥ may be approxi-
mated by =c In(4z /r) and y =c* In(r/t?). With the use of
these approximations, Eq. (19) becomes (for any c)

dr
ds?
2 3 2 2
z_w[(ﬂ) +(£)] +2_(£(‘:+_c)££
r ds ds t ds ds
44ct 4c¢’ + 4c 5 Ct4cz 5
+ P20+ e+ 3 1+ Py — 20+ 1 P @n

Since |dr/ds| < dt /ds {by Eq. (20)] and r<¢, the term

2(2¢? + ¢) (dr/ds) (dt /ds) t ' is negligible in magnitude com-
pared to the term — (¢ + ¢) (dt /ds)*r”, so we ignore the
former. When (dt /ds)? is evaluated from Eq. (20), and then
substituted into Eq. (21), the latter equation becomes

2 2 2¢4 2¢ + 4¢
dir _ _ (E+40) [,(dr + AT , (22)
ds’ r ds Pt e

for radial geodesics (i.e., for P, = P, = 0). First, we consider
the case ¢ = 1. Equation (22) becomes

dr 3 [ (a’r)2 4t2]
ds? 4r ds + P2 @3

Note that d 2r/ds’ is negative. Thus, if dr/ds is initially nega-
tive along a radial timelike geodesic near » = 0, the geodesic
will reach r = 0. (Clearly, this conclusion holds for any
¢>0.) That is, the timelike part of the big bang, in the cos-
mology described by the metric (17), is attractive.

Second, we consider the case c = — 1. In that case, the
terms on the right hand side of Eq. (21) which do not involve
P, or P, are positive, and any nonzero value of P, or P,
makes an additional positive contribution to d *»/ds*. To
show that no geodesics reach the singularity in this case,
then, it suffices to show that radial geodesics do not reach the
singularity. For radial geodesics in the case ¢ = — 1, we re-
write Eq. (22), by defining v=dr/ds. Then the left-hand side
of Eq. (22) is dv/ds = (dv/dr) v = Ld (v*)/dr, and the equa-
tion becomes

a@w) v’ 1

— . 24
dr r + 8ri @4
The solution to Eq. (24) is
rl/Z
== e 25)

where the constant « has the value k = v}/r, + (1/16r,)'2.
where v, is the value of v at some initial value r, of r along the
geodesic.
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Equation (25) shows that v?, along an initially ingoing
geodesic, must reach zero at a value of » greater than zero;
the outward acceleration then directs the geodesic to larger
values of . Thus, the timelike part of the big bang, in the
cosmology described by the metric (18), is repulsive.

An explanation of the difference between these two
cases, one in which the timelike part of the big bang is attrac-
tive and the other in which it is repulsive, is suggested by a
rough interpretation of what is occurring in these vacuum
cosmologies. The spacelike part of the big bang is emitting
gravitational radiation along the two null directions at each
of its points (see Fig. 2); the timelike part of the big bang,
however, is emitting radiation (“losing mass’’) outward
along only one of the null directions, while radiation is col-
lapsing onto it from the other null direction. Evidently, the
singularity is repulsive or attractive, depending on whether
the emission or the collapse of radiation, respectively, is the
dominant process.

Consider a fully general perturbation of a solution in
which both of these processes are present. On the one hand,
we see no reason to think that the perturbation will prevent
the timelike part of the singularity from emerging or emit-
ting radiation. On the other hand, because of the (generally
assumed) instability of collapsing cylinders to the formation
of discrete lumps, one would expect that the collapse which
in the unperturbed solution is directed, by virtue of the high
degree of symmetry, exactly toward the singularity, will in
the perturbed solution be redirected, by functions depending
on z and @ as well as r and ¢, toward the lumps which are
forming, rather than toward any singularity which may be
present. Thus, of the two processes which in the unperturbed
solution compete to determine whether the timelike part of
the singularity is attractive or repulsive, it is likely that one is
eliminated by a perturbation. That is, the cosmologies in
which the timelike part of the big bang is attractive are prob-
ably unstable, becoming, for instance, ones in which the ti-
melike part is repulsive.

In closing this section we note briefly that there are
cylindrically symmetric analogs of the Vaidya metrics; this
may be deduced from Liang’s' discussion of Rao’s (unpub-
lished) solutions. As in the spherically symmetric and plane
symmetric cases, an arbitrary function of an outgoing null

/

N

FIG. 2. A cylindrically symmetric vacuum cosmology with a mixed big
bang. Gravitational waves leave the spacelike part of the singularity in both
null directions; they leave the timelike part of the singularity in one null
direction, and enter it along the other.
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coordinate allows one to have an arbitrary rate of radiation
of photons, and a mixed big bang.

IV. CONCLUDING COMMENTS

A question of considerable interest in theoretical gener-
al relativistic cosmology is whether the presence of a Cauchy
surface is a generic feature of inhomogeneous cosmologies.
(The term “‘generic” is used in several somewhat different
ways, any of which is appropriate in this informal discus-
sion.) Such a surface does not exist if the big bang contains
spacelike sections, as well as pieces which are (generalized)
negative-mass singularities, which are timelike. While a big
bang with this mixed causal structure can occur only under
constraints on the type of matter if a cosmology has spherical
or plane symmetry, it can occur in vacuum (and thus regard-
less of the presence or type of matter) if the symmetry is not
one whose vacuum limit is governed by a Birkhoff theorem.
That is, roughly speaking, the situation depicted in Fig. 1, in
which a negative-mass singularity grows out of a positive-
mass singularity (by means of a singularity’s emitting mat-
ter) can occur in vacuum (by means of a singularity’s emit-
ting gravitational waves) if the spacetime’s symmetry is not
one which prohibits the occurrence of gravitational
radiation.

It is perhaps the case that such phenomena—spacelike
inhomogeneities on the big bang turning into timelike
ones—do not occur frequently among solutions to the field
equations. That is, it is possible that their occurrence, which
has in fact been seen only in highly symmetrical situations, is
unstable to perturbation. If their occurrence is stable, how-
ever, then the decision to preclude them from the actual big
bang is presumably to be made and explained by the (pres-
ently unknown) quantum theory of gravity.

We conclude with a comment on the possibility of a
naked singularity developing in vacuum. We use the term
*“naked singularity” as it is most commonly used, torefer to a
timelike singularity which develops from the collapse of an
initially nonsingular system. (Typically, one has in mind a
collapsing star; any example in vacuum would indicate that
the formation of a naked singularity need not depend criti-
cally on the properties of matter, or, more generally, on the
presence of matter.) It is known that the region m <0 (includ-
ing the singularity) of the Vaidya solutions discussed in Sec.
IT A can form as the result of the gravitational collapse of a
radiating star,"” and evidently the field equations allow the
formation in vacuum of close analogs to that region, in spa-
cetimes whose symmetry is weaker than spherical symmetry
(and thus in which gravitational radiation may play roles
which are necessarily taken by matter in spherically sym-
metric spacetimes). Possibly, then, such analogs (which have
so far been seen to develop only from singular initial condi-
tions) can also form from (vacuum) nonsingular initial con-
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ditions, in which gravitational radiation is substituting for
both the collapsing star and the emitted photons which are
essential in the spherically symmetric case.
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A theorem is proved to the effect that, for isolated gravitating systems in equilibrium,
the definition of total angular momentum involving fields at null infinity agrees with

that involving fields at spatial infinity.

1. INTRODUCTION

Asymptotic properties of the gravitational field of iso-
lated systems have been investigated in two distinct regimes:
at large null separations from sources and at large spacelike
separations (see, e.g., Refs. 1-6). In each regime, asymptotic
symmetry groups have been analyzed, equations satisfied by
asymptotic fields have been obtained and conserved quanti-
ties have been constructed. These investigations have shed
light on a variety of issues concerning isolated gravitating
systems. Furthermore, much of one’s intuition about the na-
ture of the gravitational interactions in the relativistic re-
gime is based on these analyses.

Unfortunately, however, practically nothing is known
about the relation between the structure available at nuli
infinity and that available at spatial infinity. Investigation of
this relation is of considerable physical interest because one
does expect the gravitational field of an isolated system to be
asymptotically flat in both regimes. Consider, in particular,
the notion of angular momentum. At least in the absence of
gravitational radiation, one would expect the sources to give
rise to “‘just one” asymptotic spin vector to which the angu-
lar momentum of test particles can couple. The mathemat-
ical description, on the other hand, provides one such vector
in each regime. One is therefore led to ask for the relation
between these two vectors.

In order to analyze such issues, a general framework
aimed at obtaining a unified description of null and spatial
infinity has been recently introduced.’’ The purpose of this
note is to use this framework to examine the relation between
definitions of angular momentum available in the two re-
gimes. We shall show that, in stationary space-times, the
definitions do agree; there is, in fact, “just one” spin vector.
The investigation of the corresponding question for 4-mo-
menta is greatly simplified due to the availability of the Ko-
mar integral for total mass. It is the absence, in general sta-
tionary space-times, of similar integrals for angular
momentum that makes the present analysis difficult.

Why do we restrict ourselves to stationary space—times?
Although a satisfactory definition of angular momentum is
available at spatial infinity for a wide class of nonstationary
space—times, it is only in the stationary case that the notion is
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free of supertranslation ambiguities at null infinity. 8'2 That
is, the presence of gravitational radiation induces a qualita-
tive change in the notion of angular momentum at null infin-
ity. Therefore, in the general nonstationary context, it is dif-
ficult to imagine a simple, direct relation between the
angular momentumlike quantities that have been intro-
duced so far in the two regimes. It may turn out that if one
restricts oneself to nonstationary space-times in which the
gravitational radiation falls off in distant past at a suitable
rate—and such a restriction may be implicit in the defini-
tion’ of asymptotic flatness to be used in this note—one
would be able to remove the supertranslation ambiguities
and again compare the two spin vectors. However, even if
this turns out to be the case, the present analysis in the sta-
tionary context would clearly serve as an essential first step
in the required investigation.

2. PRELIMINARIES

In this section, we recall the definition of asymptotic
flatness to be used in the main theorem and reexpress the
formula for angular momentum at null infinity ®-'? in an
intrinsic way, i.e., without reference to spin and conformally
weighted functions representing basis vectors in the BMS
Lie algebra, which makes its basic properties transparent.
This discussion will also be useful for fixing notation.

Definition 17: A space~time (M €. ) will be said to be
asymptotically empty and flat at spatial and null infinity if
there exists a space—time (M, g_,) which is C * everywhere
except at a point i ° where g, is C ~°, together with an im-
bedding of Minto M (with which we identify M with its
image in M) satisfying the following conditions:

NJGE)=M— M,

(ii) There exists a function {2 on M such that, on M
8o = 2%, 0n[J (%) —i°], 2=0,7,250; and, at ; °,
N=0,v,2=0,andlim_,;\7,/, 2 =2g,1{, and,

(iii) There exists a neighborhood N of J (i °) in M such
that (¥, g, ) is strongly causal and time orientable, and in
MnN 8., satisfies Einstein’s vacuum equation.

The point represents “spatial infinity” of (M gub)
while .#: = [J (i °) — i °] represents “null infinity.” [Here,
Hawking and Ellis '* terminology has been used for the caus-
al structure of (M, g, ).].# isa disjoint union of two sets, .7 *
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and .# ", which contain points of # which are, respectively,
to the future and to the past of i °. (The C >° differentiability
requirement on g,, ensures, in essence, only that g, is C°,
smooth in its “angular dependence” at i °, and that its deriva-
tives—i.e., its connection—suffer only finite “‘radial” dis-
continuities at i ° (for details, see Ref. 7,5). The relation be-
tween the notions of asymptotic flatness expressed in this
definition and other definitions available in the literature has
been discugsed in Ref. 7.

Let(M, §,,) be also stationary; i;e., letit admit a Killing
field £ which is timelike with g, 7 °f * bounded in NnM for
some neighborhood N of J (i °) in M. Then, a number of sim-
plifications occurs. A

Consider first the null regime. The presence of ¢? en-
ables one to select a preferred four parameter family of cross-
sections, the shear-free cuts, of # *. Let us, for simplicity,
restrict ourselves to # *; all our remarks will apply equally to
#~. Denote the space of preferred cross sections by »2*. The
presence of »2* enables one to select a preferred Poincaré sub
Lie algebra of the BMS Lie algebra associated with .#™. /»*
itself is naturally equipped with the structure of a pseudo-
Riemannian manifold, diffeomorphic to R %, the associated
metric being flar. Finally, there is a natural isomorphism
between the isometry Lie algebra of ».* and the preferred
Poincaré Lie algebra on .# (for details, see, e.g., Ref. 14 or
11.) This isomorphism plays an important role in the intro-
duction of conserved quantities. For example, the Bondi—
Sachs "2 4-momentum P, is a constant vector field on ,*
defined by

P, Ve =(—1/327) f *Kopea 12 X5 dS 7, (D

where V¢ is a constant vector field on »*; X ¢, the corre-
sponding infinitesimal Poincaré transformation on .#"
(which is a BMS translation since V' “ is a translational Kill-
ing field on »2*); K .y = lim__ - 2 ~ ' C,,., is the asymptot-
ic Weyl curvature; *K,.; = €,pmn K ™" its dual; S, any 2-
sphere cross section of #™ and 1°¢, the null vector field orth-
onormal to this cross section satifying 1°%/, 2 = 1.
(Throughout, Greek indices will refer to »z* and Latin ones
toM.)

Next, we introduce angular momentum, M, at null
infinity. The definition of P, suggests an expression for
M,;. Set

M s () F** )
= (= 1/320) [ Koy 1° X7 45, @

where p is a point of 2", i.e., a shear-free cross section of #;
F*P(p)is an arbitrary skew tensor at p and X °/,, the infini-
tesimal Poincaré transformation on .# ™ corresponding to the
Lorentz transformation about p generated by F*# (p) on »".
Using (1) and (2), it is straightforward to verify that M, ;(p)
has the following “transformation property”

M, s0) =M, z(0) + P Ty, Q)
where T} is the vector connecting p and p’ in »»*. Thus, the
tensor M, 5(p) may indeed be regarded as the angular mo-
mentum of the given isolated system about the “origin” p.
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Introducing suitable tetrad vectors on .#* and spin and con-
formally weighted functions (on the space of generators of
# ) corresponding to the various BMS vector fields, one can
show that the expression (2) agrees with angular momentum
expressions, involving fields on .#*, available in the litera-
ture. ¥'2 The spin vector S, is defined as usual by

Sa: = aBy&My‘s Pﬁ! (4)

where€,,5 is the natural alternating tensor of ».*. From Eq.
(3), it follows that S, is a constant vector field on »" (orth-
onormal to P, ); unlike M, 4, S, is origin independent.

Finally, the situation at spatial infinity may be summa-
rized as follows. The group of asymptotic symmetries is now
the (infinite dimensional) Spi group. >’ In its structure, this
group is very similar to the BMS group: it is a semidirect
product of an infinite dimensional Abelian group (of Spi su-
pertranslations) with the Lorentz group, and, furthermore,
admits a preferred four-dimensional normal subgroup (of
Spi translations). The ADM 4-momentum P, (the generator
of Spi translations) may be regarded as a vector in the tan-
gent space at / °. The presence of the Killing field ¢ again
leads to the selection of a preferred Poincaré subgroup of the
Spi group.'® Under certain mild regularity requirements on
the asymptotic curvature, one is then led to a definition of
angular momentum. Set

M, F*¢ = (1/87) J By X2p dS”, ®)

for arbitrary skew tensors F in the tangent space of / ,
where, S is any 2-sphere cross-section of the hyperboloid &
of unit spacelike vectors at i °; X5 = *F®* v, the restriction
to & of the infinitesimal Lorentz transformation generated
by *F,, in the tangent space of i *; and B,, ()

=lim_,;. *C,,.,, 7" 1", the limit being taken along a space-
like curve with unit tangent 7, , is the tensor field on &
representing the “magnetic part” of the asymptotic Weyl
curvature. Thus, for each choice of the conformal metric
8.5 Eq. (5) defines a skew tensor M, at /°. It turns out that
there is a close connection between the permissible confor-
mal rescalings of g, and Spi translations. Under these res-
calings, B,, transforms just in the appropriate way for M,
to satisfy the analog of Eq. (3). (For details, see Ref. 7 or 5.)
The four-parameter family of skew tensors M, obtained by
using all permissible conformal metrics represents the total
angular momentum of the given isolated system. Finally, the
spin vector S, is defined via

Sa: = €4ped Pb MCd’ (6)

where €,,,, is the alternating tensor at 7 ° defined by g, .
Again, S, is a fixed vector at i °; unlike M,,,,, it is unaffected
by conformal rescalings.

3. THE RELATION BETWEEN S, AND S,

Consider first the Bondi-Sachs 4-momentum P, and
the ADM 4-momentum P, . Using Einstein’s equation on
£.s it is not difficult to show that P, is necessarily colinear
to ¢, , the time translation on »».* induced by the Killing field
t“on (M, §,,). Similarly, at spatial infinity one can show
that P, must be colinear to the vector at ; ° representing the
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ator of the infinitesimal Spi translation induced by £o. 1
Thus, in each regime the asymptotic rest frame selected by
the 4-momentum coincides with that selected by the Killing
field. Finally, using the Komar integral associated with ¢ 7,
one can show that the Bondi~Sachs mass equals the ADM
mass; P* P, = P, P° In this sense, in stationary space-
times the two available 4-momenta do agree.

The corresponding analysis of spin vectors is not as
straightforward. Indeed, since the spin vectors S, and S,
fail to be colinear to the time translations induced by 7° on
# and Spi respectively—in fact they are orthogonal to these
time translations—we need to introduce additional struc-
ture before we can even formulate the question of their equa-
lity. We therefore begin by introducing this structure. We
have:

Lemma 1: There is a natural homomorphism ¥ from
the BMS Lie algebra associated with .#* onto the Lie algebra
of infinitesimal Lorentz transformations in the tangent space
at i °. The kernel of ¢ is the supertranslation sub Lie algebra.

Proof: Using the definition of asymptotic flatness, it is
easy to establish a natural diffeomorphism between the space
of generators of £ and the 2-sphere of future pointing null
directions in the tangent space of i °. Fix an infinitesimal
BMS transformation X ¢ on .#*. X ¢ induces, via its action on
the space of generators, an infinitesimal motion in the null
cone in the tangent space of 1 °. It is easy to verify that this
motion uniquely extends to an infinitesimal Lorentz trans-
formation X ¢ in the tangent space of / °. Set (X ¥) =X*.
This ¢ is clearly a homomorphism. Finally, since the BMS
supertranslations can be characterized by their property that
they leave each generator of .#* invariant, it follows that X *
isin the kernel of ¢ if and only if it is a BMS supertranslation.

a

Fix a point p in " and a skew tensor F, 4 at p. Let
X °f(, be the BMS vector field on #* corresponding to the
infinitesimal Lorentz transformation about p generated by
F, 5 in . Since (X “r(,) = X“ is an infinitesimal Lorentz
transformation at °, it defines a unique skew tensor F,, at

°. Thus, ¥ gives rise to an isomorphism # between constant
(second rank) skew tensor fields on ».* and (second rank)
skew tensors at ; *)(F wp) =F,, (That  is independent of
the initial choice of p in " follows from the fact that the
kernel of ¢ consists of BMS supertranslations.) The mapping
1 in turn gives rise to an isomorphism ¢ between constant
vector fields on ,».* and the tangent space at i °. Using this z//
we can now formulate our question concerning the two spin
vectors: Does (S, ) equal S_?

In order to answer this question, we first note an impor-
tant property of the mapping . Consider the SO(3) sub-
group of the Lorentz group about p (in »2*) which leaves the
vector P, atpinvariant, i.e., consider the little groupof 7, | .
Denote the corresponding Lie algebra by .. Similarly, de-
note the Lie algebra of the little group of P_|,. by .Z;.. Ele-
ments of .%, are represented by skew tensors F, 4 (p) satisfy-
ing F,, ;(p) P = 0 and those of .Z";. by skew vectors F,, at
i°with F,P%=0. We have:

Lemma 2: ¢ is an isomorphism between the Lie alge-
bras ¥, and .% ;..
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Proof: The key idea is to use the fact that on ", P,
parallel to the time translation induced by t ,andati® P is
parallel to the Spi translation induced by £ the two llttle
groups are thus singled out by the presence of the Killing
field 2°. Fix an element F, 5 (p) of .£°, and consider the cor-
responding BMS vector field X ., on .#*. Then, .#; X .,

=0 on.#". Consider any extension X “ of X &, to a neigh-
borhood N’ of J (i *)such that X ¢is C *inN'n M, C >°ati°,
and satisfies .#’; X “ = 0. Taking the limit of this last equa-
tion along a spacelike curve approaching / ° and using the
fact 'S that lim .2 ' = — 1/2K° + (K-n) ° where
K “is a fixed vector at / * and m ¢ the unit tangent at / ° to the
spacelike curve of approach, one obtains Klim__,. <7, X,
=K°F,, = 0. However, K“is parallel to the ADM 4-mo-
mentum P °.'* Hence, F,,, belongs to ... By construction,
itis clear that F,, = { F, « ) Since F, 5 is arbitrary, it fol-
lows that ¢(,f )C.% ;.. Finally, since ¢isa homomorphlsm
from the BMS Lie algebra onto the Lorentz Lie algebraat;°
and since the kernel of this mapping contains only BMS su-
pertranslations, it follows that ¢ is an isomorphism between
L, and .7 .. i

Remark Lemma 2 implies, in particular, that 1/1( P)is
proportional to P, . Since the existence of the Komar mass
integral implies £, P“= P, P“, we have #(P,)=P,. Thus,
the isomorphism ¢ enables us to obtain a more satisfactory
statement concerning the agreement of the two 4-momenta
than the one presented in the beginning of this section.

We can now consider the spin vectors S, and S,. We
have .

Theorem: ¥(S,) =S

Proof: From the definition of the two spin vectors and
that of the mappings ¢ and ¢ it follows that ¥(S,) = S, if
and only if M5 ( p) F*#(p) = M,, F*® for some p in " and
arbitrary skew tensors F*#(p)e.# , where F,, = W Fp).
[Because F, 4(p) belongs to ., it follows that
M, ;(p) F®P =M ;(p) F*P(p)¥p'er’, provided F*Pisa
constant tensor field on ».*, while, since by Lemma 2 F ,
belongs to .¥;., M, F*? is invariant under conformal rescal-
ings of g,,.] We shall therefore show thatM,, , F**-

=M,, F* forall F, 5 in .7 ,. The key idea is to construct a
2-form in # with the property that its integral over a 2-

sphere tendsto M ; F @5 a5 the 2-sphere converges to the
shear-free cross-section p of .#* and to M, F* as the 2-
sphere converges to / °. To this end, we introduce certain
fields.

Fix an element F,, z(p) of .2’ ,. Consider the BMS vec-
tor field X 2. non S FixaC ! three-dimensional, space-
like submanifold T in (M, g, ) passing through / ® which is
orthogonal to the ADM 4-momentum P, at i °. Consider an
extension X ¢x( , to a neighborhood of J (i ®)whichis C >°at
i®, C = elsewhere, and orthogonal to 7. [Such an extension is
possible because, by Lemma 2, (X ¢ ) is a “boost” vector
field in the tangent space of i °.] Next, introduce a null vector
field /¢ in a neighborhood of J (i °) satisfying the following
properties: (i) /¢ is orthogonal to the shear-free cut p; (ii)
197,02 = 1on.# (sothat £;/%=(—lim_ , .Z;

log 2) I¢on.#);and, (iii) £ ;19 = (~ .£;log 2) [ “in the
intersection of the this neighborhood with M. Finally, con-

A. Ashtekar and M. Streubel 1364



FIG. 1. The physical space-time (1(1\, £.,,) consists of points of the complet-
ed space-time (M, g,,) which are spacelike related to 7 °. T is a spacelike
hypersurface in (M, g, ) passing through { °, being orthogonal to the ADM
4-momentum P, at ¢ °. C, is a sequence of timelike hypercylinders (defined
by, say, §,,¢ °t ® = const on each C,) which converges to J (i °). S, is the se-
quence of 2-spheres, the intersection of C; with T, which converges to i °,
while § . is a sequence of 2-sphere cross sections of C; which converges to a
given shear-free cut p of 4.

sider a family of timelike hypercylinders C; in M (defined by,
say, 8,, 1°t® = const on each C,), converging to J (i ). Let
these C; intersect the spacelike 3-surface 7'in a family of 2-
spheres .S; which converge to/°. Let §i (CC,;) denote an-
other family of 2-sphere cross sections which converge to the
given shear-free cross section p of .#~. (See Fig. 1.)

Now, on the cylinders C; we have

ac, Vim Kap jea [¢X9)dSm = L
|, Kaal® x5 ™
where 4 Ci'is the part of the hypercylinder C; bounded by :ST
and S;. Using the fact that any 2-form £2,, satisfies
30"t Basy + 215 @ 1) = L1020y =0, ®

that the integral of the exact 2-form 7, (2, r ) must
vanish on a 2-sphere, and that .¥"; K ., ¢ = 0, Eq.(7) sim-
plifies to
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lf Kopoa 1€ ( LX) dt NdS*
3Jac,

= L —fKabchCdeS“b. ©)
S, S,

(Here, the surface element dS mab has been decomposed:
dS™® = {™ dt AdS *.) Now we take the limit as C;'s ap-
proach J (i °). Using the commutation relations of the Poin-
caré group, the Bianchi identities and the fact that F, ; be-
longs to .Z,, we obtain

lim Kopea IS (LX) dt A dS =0.

(10.a)
—J(?) Jac,

Using Bianchi identities and the fact that on p, X 3,
= €, X %, ,, with €] the natural alternating tensor on p, de-
fined by g, , it follows that

lim | Koyl X9dS® = —327M, , F°.

— S,

(10.b)

Finally, using the asymptotic field equations >’ on the hy-
perboloid Z at i °, the fact that F,,, belongs to . ;. and that
X “is normal to the spacelike 3-surface T, we have

1imf Kyl X9dS® = — 327M,, F*. (10.c)
—i° S;

From Egs. (9) and (10) one now has: M, ; F*# = M, F**.
Since F, 5 (in .Z,) is arbitrary, we have ¢ (§,)=S,. O
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New linear conditions are derived which must be satisfied by a two-body density matrix.
In the derivation, the ideas of Davidson and McRae are extended so that full use is
taken of the symmetries of the system. The coefficients of the linear form are

determined by means of reduction of a chosen group in a physically meaningful chain of

its subgroups.

1. INTRODUCTION

In the density matrix method the state of an N-fel;r\nion
system is represented by its two-body density matrix I,
[ opeq =<V |(3,8,)'(@.4,)| ¥, rather than by its wave-
function ¥; 4,, 4,, d., 4, are annihilation operators for some
fixed orthonormal basis which is finite. The two-body densi-
ty matrix for the ground state of the system is determined
variationally by minimizing the functional

E = min ttHl" = min} 3 Hopoal pea
reD~, reD~ agbed
The variational parameters I, must satisfy certain subsid-
iary conditions (representability conditions) in order to cor-
respond to a physical state; the convex set of N-representable
density matrices in denoted by D %. The coefficients H
are matrix elements of the reduced Hamiltonian

Habcd = H‘O,(éacﬁbd - 6ad6bc)/%N(N— 1)
+ (H (8yq + H 180 — H ()50 — H 408,4)/
XN =D+ HGy— H Qe

Since the set of all representability conditions is not
known in an explicit form, only subsets ot necessary condi-
tions have been used in direct variational calculations.! Im-
portant conditions are the nonnegativity of the two-body
density matrix I, the particle hole matrix
Gopea = <¥ | (@14,)1(d’a,)| ¥ >, and the two-hole matrix
Qupea' <¥ |(d,4,)d4,)7| ¥ >. This subset gives reasonably
good results for some systems with a small number of va-
lence particles. However, calculations with a larger number
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of particles indicate that other important conditions are still
missing.

In the search for new conditions, Davidson and McRae?
and Erdahl’ have introduced a finite set of linear inequalities
by reqlli\ri/xlg that the set of;\ mutually commuting operators
A= NN, (allaand b), N, = G}, should have physically
realizable expectation values.

In this paper we generate new conditions by using a
more general set of commuting operators. In this way, the
symmetry of the system can be properly taken into account
(Sec. 1). The general form of new conditions is presented in
Sec. 3. In choosing a more general set of commuting opera-
tors it is convenient to demand: (i) easy verification that the
operators commute, (ii) an easily computable spectrum of
operators, (iii) incorporation of all the symmetries of the
system, (iv) some hint that the operators are physically
meaningful. We consider here a group and a chain of its
subgroups which have been commonly used in the wave-
function method. We choose a commuting subset of gener-
ators of the group and the Casimir operators of all sub-
groups. Group theoretical techniques allow the
simultaneous eigenvalues of these operators to be easily ob-
tained. These techniques are developed and illustated in Sec.
4. The use of new conditions is discussed in Sec. 5 and their
effectiveness is tested on a simple many-body system in Sec.
6.

2. REPRESENTABILITY CONDITIONS FOR THE
SCALAR PART OF THE TWO-BODY DENSITY
MATRIX (“SCALAR CONDITIONS”)

We first want to introduce the concept of ““scalar condi-
tions.” In order to express the energy of a system with a
rotationally invariant Hamiltonian,
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E=wHl= — S HL L, 1
7 2 veal Ghea 1

abed
LS

it is sufficient to know the scalar part of the density matrix
't . This can be seen as follows. We denote the single-
particle basis by |ams), a=(n,, j,) denoting the “level” and
ms denoting the third component of orbital angular momen-
tum and spin. In nuclear physics;, and m refer to total angu-
lar momentum (half integer) and s to isospin. What we shall
call spin should mean spin to an atomic physicist and isospin
toanuclear physicist. A suitable two-body basis is defined by
the two-body creation operators

(FLMSZ) = z CJ mj,m’ C'(S;EZ)(S'/Z)(éamsébm’x')T‘ (2)

mm'ss’

Then
= z FsbLa'iSS%le Z (— -~ MCL ML'M’
LSS MM33
abCJL/I;taf
( I)S Ecu‘r 55 v'(F(I;[;MSZ)TFfd'M’S'E" (3)

If we ignore spin orbit forces, then H will contain only the
scalar part (A =y = o =7=0):

H= ZHabcd >y (= DETMCY (= D2
abed MM'33"
LS
XCE sss5 (FLMSE)TI/;CL;” b )

and tr AT will also contain only the scalar term of I/“\,
I Grea=T Gii .

Since we need only the scalar part of f, it would be
desirable to have representability conditions involving the
scalar two-body density matrix alone. The Garrod-Percus
theorem® that tr4/">A _ is necessary and sufficient (4 =
any operator, 4 _ its lowest eigenvalue in N-particle space) is
still valid if 4 and 7" are both restricted to scalar operators
(see the proof in Appendix A). We shall use group theory to
provide us with a suitable subset of scalar operators A for
which we know 4 _ . In this way we shall generate a subset of
necessary conditions.

3. GENERAL FORM OF THE DIAGONAL
CONDITIONS

Davidson and McRae,? and Erdahl® introduced a set of
conditions which are necessary and sufficient for the repre-
sentability of the diagonal elements of a two-body density
matrix in a two-body Slater basis I,,4,,. We shall introduce
more general “diagonal conditions” referring to diagonal
elements in any two-body basis.

The conditions on F aBap, BTE generated by the set of
commuting operators AaB = N NB, N =adl4, General di-
agonal conditions are ggnerated by a general set {4 '} of
commuting operators 4 ', { = 1,...,Z in the following way.
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Take a set of all positive definite operators r w1th a
normalized trace. Define a parameter space Al=td ’F
i = 1,...,Z. If the dimension of the Hilbert space of 0-particle
up to N-partlcle states is K, then there are K simultaneous
elgenvalues of A denoted by 4 4, k = 1,...,K. The vectors
A | define K points in the parameter space, spanning a con-
vex polytope. In analogy with Ref. 2, we can state the
following

Theorem A necessary and sufficient condition that a
given vector A representable is that it lie within the
polytope:

K ) K
= ¥ wdi 220 > p=1 5)
k=1

K=

ey
By representable we mean that there exists a representable I”
such that

Al=td'T
The proof of this theorem follows the ideas in Ref. 2 and is
given in Appendix B.

Let us justify the name “diagonal.” If | %) are simulta-
neous eigenstates of A'in the two- -particle space with eigen-
values A4 ’,], one can write

A'=trd'T =3 Lpl A"\ > <’ [T |

'
= ZA;F"PI
n

The conditions on 4 ‘ are necessary for r They are necessary
and sufficient for the linear combinations X, Al w Ly of diag-
onal elements of I"in this specific basis. In the two-body
Slater basis, the conditions are necessary and sufficient for
all diagonal element I, ;,; (Ref. 2); on the other hand, in an
arbitrary basis, the new diagonal conditions are not suffi-
cientforall I", , (just for Z linear combinations of I, , ). The
reason is that one obtains a complete set of commuting oper-
ators only in the two-body Slater basis, while the number Z
of a general set of commuting two-body operators Alis
smaller, but they are different from the Slater-basis
conditions.

In the following we shall be mterested in “scalar diag-
onal conditions,” c}}\oosmg scalar 4 "only. There are many
choices of the set {4 ‘}, and one should consider physical
relevance and numerical feasibility in choosing it. The con-
struction of the polytope would be a prohibitive task if it had
to be performed numerically for large Z. It is here that group
theory can help.

4. APPLICATION OF GROUPS

First, one chooses a relevant group and a chain of its
subgroups. Group theory then offers a convenient set of
commuting operators, namely, a few generators plus all Ca-
simir operators. Group theory also offers all their simulta-
neous eigenvalues (“the polytope™). If the groups in the
chain contain O(3) as a subgroup, all Casimir operators are
scalars. We shall give three examples.
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TABLEI j, = §.

Quantum numbers Eigenvalues of

SU@) U@ Sp(2) o) R ,
N, T, 92! (©) L, N, N2 16, =L2=2N, - N2 72
0 0 {0] (O] 0 0 0 0
1 I (1 ) 4 1 1 i
2 0 [2] 2) 1 2 4 2

1 [11] (0) 0 2 4 0
3 3 21] O] ) 3 9 3
4 0 [22] 0) 0 4 16 0

A. One-level conditions

The single-particle operators acting only on states of a
given level ( = subshell) are generators of the group
U(2(2/, + 1)), so this is the obvious group with which to
start. A suitable chain is

UQ, + )DSUQ e UE), + 1),
U2, + )20, + 1)20(03),

o {U(zja + DDSp(2, + 1) D0A),

The chain offers the following one- and two-body scalar

operators (some care is required to choose only linearly inde-
pendent operators).

for integer j,,

for half-integer j,.

The only scalar generator is 1/\’: (the number of particles
in the level @).

The Casimir operator of U{2(2/, + 1)) depends only on
N, (in the space of totally antisymmetric wav/gfuncti(/)\ns),
and therefore it can be expressed in terms of N, and N 2.

The Casimir operator of SU(2) is X3 Z (the total spin in
level a).

TABLEIL j, = 1.

The;\ Ca/s\imir operator of U(2j, + 1) is linearly depen-
dent of N,, N2, and S2 if restricted to the space of antisym-
metric total wavefunctions [the Young tableau @: of
U(2j, + 1) must be adjoint to the Young tableau = of
SU@©2)].

The Casimir operator of O(2j, + 1) or Sp(2j, + 1) is™

= S (- D@k + 1)
2.](1 +1 odd k
X ¥ Chk-UU (6)
q
where
6’52 z Cj}c“:;,,m'dstaAam's'

The Casimir operator of O(3) is
{3/j,(j. + 12, + 1)} L 2 (the total orbital angular momen-
tum in level a).

. P /\2 /\2
Thus we have five commuting operators, N,, N, S,

Quantum numbers Eigenvalues of
SUQ) Uu3) 0(3) N N N PR
N, S, [f] (o) L, N, N S3 2C,=1L;
0 0 [0] 0 0 0 0 0 0
1 1 1] 1 1 1 1 3 2
2 0 [2] 2 2 2 4 0 6
0 0 2 4 0 0
1 [11] 1 1 2 4 2 2
3 1 [21] 2 2 3 9 3 6
1 1 3 9 % 2
2 (11 0 0 3 9 = 0
4 ~ o~
5 One gets the same sets of quantum numbers as for 6, only the columns for N, and N} are different.
6
1368 J. Math. Phys., Vol. 20, No. 7, July 1979 Erdahl et al. 1368



TABLE 11l j, =§.

Quantum numbers

Eigenvalues of

SU(2) U4) Sp(4) 0(3) . ~ ~ ~ ~
N, T, (/] G Ly minLama | Mo N r; C. L
0 0 [0] (00) 0 0 0 0 0 0
3 5 15
! ! [1 (10) 2 1 1 } : =
2 0 2] (20) 1,3 2 4 0 6 2,12
1 (1] (00) 0 2 4 2 0 0
(11 2 2 4 2 4 6
3 t [21] (10) 2 3 3 : 17
7 15 3 63
@1 e 3 i T bEl
3 3 15 s 15
2 [111] (10) 2 3 9 L 2 L
4 0 [22] (00) 0 4 16 0 0 0
(11 2 4 16 0 4 6
(22) 2,4 4 16 0 10 6,20
1 [211] (20) 1,3 4 16 2 6 2,12
1n 2 4 16 2 4 6
2 [1111] (00) 0 4 16 6 0 0
5-8 the same values for 72, T, L ? as for 8-N
TABLEIV, j, =2.
Quantum numbers Eigenvalues
SUQ) U(s) 0o(5) o(3) . . . R .
N, S, (/1 (01@)) amimLama | Vo N S C, L
0 0 [0] (00) 0 0 0 0 0 0
1 s (1] (10) 2 1 1 < 2 6
2 0 [2] (00) 0 2 4 0 0 0
(20) 2,4 2 4 0 5 6,20
1 (1] an 1,3 2 4 2 3 2,12
3 3 21] (10) 2 3 : 2 5
(@3)) 1,5 3 9 2 6 2,30
2 [111] an 1,3 3 9 = 3 2,12
4 0 [22] (22) 0,6 4 16 0 8 0,42
20) 2,4 4 16 0 5 6,20
(00) 0 4 16 0 0 0
1 (211] @ 1,5 4 16 2 6 2,30
an 1,3 4 16 2 3 2,12
2 [1111] (10) 2 4 16 6 2 6
5 s [221] 22) 0,6 5 25 2 8 0,42
e3)) 1,5 5 25 2 6 2,30
(10) 2 5 25 2 2 6
= 2111 (20) 2,4 5 25 = 5 6,20
an 1,3 5 25 = 3 2,12
g (11111} (00) 0 5 25 = 0 0
6-10 the same values for ?5, a,, Z\f, as for 10-N
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TABLEYV. j, = 3

Quantum numbers Eigenvalues of
SUQ2) u(e) Sp(6) 0Q) . . .
N, T, (/] (©,0:00) L, N, N? T C, L
0 0 [0] (000) 0 0 0 0 0 0
! 3 (1 (100) z 1 ] 3 7 E
2 2 4 2 4
2 0 (2] (200) 1,3 2 4 0 8 2,12
1 [11] (000) 0 2 4 2 0 0
(110) 24 2 6 6,20
3 3 [21] (100) : 3 9 z z 3
210 in 3 9 3 Bl s
3 i 2 4 2 4’ 4
2 [111] (100) 2 3 5 I 7 )
) (1“) ég 3 9 145 215 145 99
22 ry ES PRy
4 0 [22] (000) 0 4 16 0 0 0
(110) 2,4 4 16 0 6 6,20
(220) 0,8 4 16 0 14 0,72
1 [221] (200) 1,5 4 16 2 8 2,30
(110 2,4 4 16 2 6 6,20
211 1,7 4 16 2 12 2,56
2 [t1] (000) 0 4 16 6 0 0
(110 2,4 4 16 6 6 6,20
1 5 3 7 as
5 : [221] (100) 2 5 25 3 : T
(210) - 5 25 2 2 R
§ 92 A: 125 4\5 ‘;0
(11n ¥ 5 25 3 = e
] K 31 323
21) 2 5 25 : £ REEil
3 s 7 as
: Y ’ » B s
1 13 5 K 5
(210) ?;2_ 5 25 —];: = ?:E;
3 S 15 5
(€0)) 737 5 25 - = e
5 5 35 7 35
z [11111] (100) = 5 25 = : =
6 0 [222] (200) 1,5 6 36 0 8 2,30
Q) 1,7 6 36 0 12 2,56
(222) 1,9 6 36 0 18 2,90
1 [2211] {000) 0 6 36 2 0 0
(110) 2,4 6 36 2 6 6,20
(220) 0,8 6 36 2 14 0,72
211) 1,7 6 36 2 12 2,56
2 [21111] 200) 1,5 6 36 6 8 2,30
(110) 2,4 6 36 6 6 6,20
3 [111111] (000) 0 6 36 12 0 0

~

7-12 the same values for T2, C,, L2 as for 12-N

L 2 and a,. Their expectation values can be expressed in
terms of the scalar one-body density matrix and the scalar
particle hole matrix and are given in Appendix C. Forj, =3
there is an additional group in the chain, G,. For j, > 3 there
may be also additional groups, but they have not yet been
worked out. The number of linearly independent commut-
ing operators for low j_ is smaller than five; for j, equal to %, 1,
3
;7

3,4,5,5,5,6, respectively.

2, ;, 3, the number of linearly independent operators is

Examples of the “polytope” are shown in Tables I-V.
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Simultaneous eigenvalues for five commuting operators are
presented for all ja<%. The quantum numbers S,, [ /], (@),
and L corresponding to the irreducible representations of
SU(Q), U2j, + 1), O(j, + 1) [or Sp(2j, + 1)), and O(3) are
taken from Ref. 6 for integer j, and from Ref. 7 for half-
integer j,. The number of vertices of the “polytope” can be
reduced by noting that the that differ only in L, are convex
combinations of two vertices, the one that corresponds to the
lowest L, and the one corresponding to the highest L. It is
therefore enough to take only the lowest and the highest L,
in those cases where more than two L, correspond to the
same (@,@,).
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TABLE VL The chain U(24) DSU(4) & U(6), SU@) DSU(2) ® SU(2), U(6) DSU(3) D O(3).

Quantum numbers

u(e6) SU(4) sU@3) o@3) SUQ)esUQ2)
N 1 /1 (A Loin L (15)
4 141 (11t (80) 0,8 (00
42) 0,6
(04) 0,4
(20) 0,2
4 [31] [211] (61) 1,7 (01), (10), (11)
(42) 0,6
(23) 1,5
(31) 1,4
(12) 1,3
(20) 0,2
4 [22] [22] 42) 0,6 (00, (02), (20), (11)
31 1,4
(04) 0,4
(20) 0,2
4 [221] [31] (50) 1,3 o1, (10), (1D, (12), 21)
(23) 1,5
@31 1,4
(12) 1,3
(1) 1

4 [ 4] 12) 1,3

00), (1), 22)

“The quantum numbers L and TS have to be combined so that in each row any given L is combination with any given pairs 75.

B. Many-level conditions

Having single-particle states in several “levels” a,b,c,--
one can choose the following decomposition,

U(2)2UQ2(%, + 1)) e U(2(2), + 1))
e U((2.+ D)o

There are about five commuting operators per level (see the
one-level conditions in the previgus section). In addition,
there are “mixed” operators N N,, S,S,, L.L,,- . One can
get quite a large parameter space and some care is needed in
bookkeeping all the vertices of the polytope.

C. Conditions generated by the SU(3) subgroup

If one uses the orbitals of a harmonic oscillator shell,
the following chain of groups is commonly used in nuclear
physics:

U(2)DSU@) » U(6),
SU(4)DSU(2) & SU(2),
U(6) DSU3) D O(3).

In Table VI we present the quantum numbers corresponding
to this chain of groups. The vertices of the “polytope” (eigen-
values of operators) are not given in the same way as in Table
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1. The reader can construct them for himself using the fol-
lowing formulas:

Operator Eigenvalue

~ N

N N?

CSU®)  flhi= D+~ D+Hf=
+f(fi—T) = N4+ 4N,

C(SUB)) A2+ Ap+p+34 + 3,

L’ LL+ 1D,

T2 T(T+ 1),

Rk S+ 1).

The explicit expressions for the Casimir operators of the
SU(3) can be found in Ref. 8, and that of SU(4) in Ref. 9. The
table for other particle numbers can be easily obtained by
combining the U(6) D SU(3) D 0O(3) decomposition® and the
SU(4) >SU(2) ® SU(2) decomposition.’ The complete table
is not given here because it is rather long and it can be con-
structed by a computer using subtables from Refs. 8 and 9.

D. The canonical chain of subgroups

. Let us finally notice that the set of operators

A,z = N, Ng corresponds to the decomposition:
U2)DU0(2 - 1)DUE2 — 2)D---DU(1).

This decomposition offers the maximum number of linearly

independent commuting operators, but these operators are
not scalar.
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TABLE VIL Test of violation of one-level conditions for light nuclei in the
Zucker model and the 4 25 model.

with a, with é\é\ operator

Nucleus Model N, Ju K *‘violation™ K “violation™
15, Zucker 3 572 13 1.55 20 0.51
16, Zucker 4 5/2 27 0 49 0

17, Zucker 5 572 40 0 85 0

18, Zucker 6 5/2 58 0 133 0
19,. Zucker 7 572 71 0 169 0
20, Zucker 8 572 85 0 198 0
204, das 4 372 18 0 18 0
204, das2 4 572 27 0.02 49 0
28, a25 12 32 28 0 28 G
28, dS2 12 502 98 0 218 1.28

N, is the number of valence nucleons in the model, j, indicates the level
for which the one-level conditions were taken, K is the number of vertices
of the polytope, The “*violation™ is explained in Sec. 5. The conditions for
the level /, = 1 were not violated.

5. USE OF THE NEW CONDITIONS

The new conditions are given in the form of coordinates
of a polytope in the parameter space. It is easy to test a given
density matrix as to whether or not it violates the new condi-
tions. One needs a computer routine for linear programming
to test whether the set of linear equalities and inequalities (5)
has a feasible solution. If there is no feasible solution then the
program will give information about how far outside the
polytope the given point lies (the *violation™).

However, it is difficult to incorporate these new condi-
tions into a direct variational calculation in the present form.
We now have the vertices of the polytope. It would be more
convenient to have a set of linear inequalities (the facets of
the polytope) involving the variational parameters directly.
The procedure used by Davidson and McRae? to generate
the facets of a polytope, given the vertices, is too lengthy, and
also it would yield an intractable number of facets. We are
trying to develop a method of generating only the relevant
facets for a given point or a given problem, but we have not
yet been successful.

6. TEST OF THE SCALAR DIAGONAL
CONDITIONS ON A SMALL MODEL SYSTEM

So far we have tested only the efficiency of the one-level
conditions and the conditions generated by the SU(3) group
for N = 4. We have used two models: (i) the Zuker model of
some light nuclei (inert '2C core plus valence nucleons in the
1912, 1dss2, 251, levels), and (ii) the d 2s model of some light
nuclei (inert '°O core plus valence nucleons in the 1d,,, 1d,,,,
25,,; levels).

We have tested the two-body density matrix obtained
by a direct variational calculation' incorporating the nonne-
gativity of the two-body density matrix, the particle hole
matrix and the two-hole matrix (“7"GQ”"). Some of the new
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conditions were violated and some were not (indicated by
*“violation” = 0). These results are given in Table VII. To see
the sensitivity of the diagonal conditions to the choice of
operators, we have also taken the scalar operator QQ,

instead of the Ca51m1r operator of the Sp(6) group for the
levelj, =2 The operator QQ commutes with first four one-
level operators, however, its eigenvalues have to be comput-
ed numerically. The results shown in Table VII indicate that
the choice of commuting operators other than Casimir oper-
ators leads in some cases to weaker and in some cases to
stronger conditions.

The conditions generated by the SU(3) group were test-
ed in the case of *°Ne in the ¢ 25 model, but they were not
violated. However, this may not be too surprising since the
constraints requiring the proper N, N2, and T ? values were
already imposed in the “I” GQ” calculation. Also, the energy
of the “I"GQ” calculation was reasonably good, 1.5 MeV
below the value obtained by complete configuration mixing.

We cannot include the new conditions in direct vari-
ational calculations until we derive a tractable algorithm for
generating the relevant inequalities. We did calculate in one
case, that of O in the Zuker model, with the following result
for the energy of the ground state:

Complete configuration mixing — 26.02 MeV,
“rGgQ” —27.09 MeV,
*“I"GQ” plus one-level conditions — 26.69 MeV.

The improvement is noticable but not complete—the result
comes only one third of the way towards the “‘exact energy.”
If we include the QQ operator instead of the Casimir opera-
tor, the energy improvement is somewhat smaller, the result
being — 26.80 MeV.

From one-level conditions alone one cannot yet draw
conclusions about the efficiency of the complete set of new
conditions. Work is in progress to test the efficiency of the
many level conditions and other alternative choices.

The most difficult remaining problem is how to design a
numerical procedure for including the new conditions in the
direct variational calculations.

APPENDIX A: THE GARROD-PERCUS
THEOREM FOR THE SCALAR TWO-BODY
DENSITY MATRIX

For simplicity we shall consider only operators which
operate on orbital coordinates and not on spin coordinates.
The extension to general operators is straightforward.

A multipole expansion of a two-body operator A canbe
written:
A= 3 4

shea (A0 > (= D MO sy FUDFLM

abed MM’
JI ' Au
. ~~N
= Z A (A1)
An
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The following orthogonality relation holds:

trAA#B,{vﬂr = 54115#,1' trAlyB/ly' (A2)

Theorem: Let //1\ be a Hermitian operator and A4, be the
scalar part (1 = g = 0) in its multipole expansion (A1), then
the Garrod-Percus condition on the scalar two-body density

matrix 7,

trAl >4 (A3)
is implied by the condition

ted, F>4, _, (A%)
A _ and 4, _ being the lowest eigenvalues of A and ;1\0,
respecttvely.

Proof: The left-hand sides of (A3) and (A4) are equal
because of the orthogonality relation (A2). We have there-
fore only to prove A, _ >4 _ . Since 4,, is a scalar operator it
commutes with the operator J and its eigenvectors can be
labeled by J and M. Let | J, M, > be the eigenvector in the V-
body Hilbert space corresponding to 4, _ . Define the en-
semble density matrix

'5”:__1___ S (—
V41 M=

Jo — M ~00
U~ "Crms — m

X[ JoM > IM |.

Slnce 4, do. does not depend on M, it follows that
TrA =A,.

For A, however: A - <TrAAﬁN . Applying Eq. (A1), the
Wigner—Eckart theorem and the orthogonality relation be-
tween Clebsch—-Gordon coefficients, one gets

— M
Z( )

Trap" =
TN 2+ 1

C Putr, — 1a < JoM |43, | JoM >

(=1 )
E _..___C . (_1)/1 Jo+M—pu
FE Vet
\/ZJO+1
\/2/1-;—

~——==Clhu. <ol 4,V

(=1
Z‘So‘su
o Vi 24+ 1

Therefore, 4 _<4,_.

ol = 4, .

We have assumed the existence of A0 for every A since
for those A with A0 = 0 the condition (A3) is void.

APPENDIX B: PROOF OF THEOREM (5) [EQ. (5)]
Let us rewrite Theorem (5) in the following form:

Theorem: A set of real numbers 4 ', i = 1,...,Z repre-
sents the eXpectatlon values of a set of commuting operators
{A '} iff A’ can be written as

= ZykAlky
k=1

(Bla)
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where y, satisfy:

K
E}’k=1

k=1

(A4 and K are defined in Sec. 3).

Proof: Let the simultaneous eigenstates of the set { A }
bedenoted by | k >, k = L...K, thend{ = (k |A "| k>.The
expectation value A'of Ainan arbitrary state | ¥ >,
| ¥> =3, c!| k), can be expressed as

R ~. K
A=@|Awy=S )
k=1

>0, (B1b)

where |c!|? are bounded by |cf|*>0, Zf_, |cf|*=1.

Ensemble averages of Aina system described by an
ensemble density matrix, ﬁN, ﬁ‘v =Z2,w, | PHYL(P | can be
expressed as

A‘—TrA“N

K .
Z S wg |k |4
=16
The coefficients =, w, | % |* are again bounded by (B1b).
Condition (B1) is therefore necessary.
Condition (B1) is also sufficient because one can always

construct a state vector | p>, | y> =2, Vv Vi | k>, wherey,
satlsf/y condition (B1b), such that 4 * from (B1a) is equal to

<ylatly>.

APPENDIX C: RELATIONS BETWEEN ONE
LEVEL OPERATORS AND THE ONE-BODY AND
THE PARTICLE HOLE MATRIX

In accordance with Eq. (3) we define the scalar one-

l;(\)dy density matrix, 7, and the scalar particle-hole matrix,
G:

A
2 j],,yabB ((z)(b)oo’

and

=3 G oo 3 (= DFMCP (=12
abed MZ
LS

DLMSIVtRL
XCE sexB o™ Bc(ﬁusz’

where

ﬁLMSZZ Z (_ l)jb 7mc.lM

Jomjm’

1) — 572
mm’
ss’

sx At A
XC 2y — 5798 amBomss

and
N S
V@i, + 1)

Ls 1

@l = 0L+ DRSS+ 1) &

Yab = (WB°1¥),

S (W [(BLSBLYS| ).
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The expectation values of the one-level operators ex-
pressed in terms of 7 and G are:

(W |N,|¥) =22, + D

(WIN2 W) =22, + DG,

WL = 2%, + D@y + DG
(#15219) = 22, + DG

~ 2,
(V[C0Q, + M|¥)=2 Y Qk+ DG

k odd
integer j ,
S 2j,—1
(P |CSp(2, + D) W) =2 ¥ (2k+ DG
k odd
half-integer j,.

Relations between G %5, and I"'%S | can be found in Ref. 1.

The eigenvalues of the Casimir operator CA‘G(O(Zja + 1))
in terms of the irreducible representation labels of the
Q\ (2, + 1), (0\@+w, ), and those of the Casimir operator
C.(Sp(2j, + 1)) in terms of (0,0,+-0;_, ,,,) are’
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(CAOQ, + 1)) = L{o@: + %, — 1) + ow: + 2,
— 3+ ww, (@, + 1),
(C.(SP(2, + D)) = 3[0n(0, + 2 + 1) + 030, + 2,

— D+ to 1000 10+ 2)]
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Segal quantization, usually thought of and used as a tool for quantizing kinematical
frameworks, is extended to (finite-dimensional) dynamical systems, i.e., to kinematical
frameworks plus dynamical motions applied to them. Such a procedure allows us to
classify quantum dynamical systems, and to understand how physical inequivalence
appears in spite of von Neumann unitary equivalence, for the former is also grounded on
the evolution operators of the systems being different functions of the labeled
observables of the systems. Second quantization is also examined and is shown to be
just one possible procedure of quantization, which can only be used in a particular class

of cases.

1. INTRODUCTION

Since the years of Poincaré, the most clear-cut math-
ematical model for a phase space description of a classical
mechanical system has been recognized to be a differentiable
manifold. “This manifold always has a special geometric
property, pertaining to the occurrence of phase variables in
canonically conjugate pairs, called symplectic structure.”"
When the symplectic space on which this classical picture is
based features particular properties, a quantization proce-
dure can be used, which is called Segal quantization.

In fact, according to Segal,”* a classical system whose
phase space “kinematical” description is based upon a linear
symplectic space {#,B ) gets quantized through a Weyl sys-
tem over (.#,B); the algebra of observables of the resulting
quantum system is an algebra (the Weyl algebra) uniquely
determined by the Weyl system. This quantization proce-
dure can be performed at least when .# is finite-dimensional
(in which case both B and the Weyl system are essentially
unique) or, more generally, when .# is a Hilbert space (the
“single particle space” of the quantum field theory), whose
inner product has B as its imaginary part. Indeed, in such
casesa Weyl system over (.#,B ) is known to exist; moreover,
whenever a Weyl system over a linear symplectic space
(#,B ) does exist, the resulting Weyl algebra is unique (up to
isomorphism), in the sense that it depends just on (.#,B )and
not on the Weyl system over (.#,B ) used for its construction.

A nontrivial and meaningful task is to look for a gener-
alization of the Segal quantization procedure expounded
above such as to include dynamics along with kinematics.
We will call dynamical system (both in the classical and in

“A Fulbright-Hays Grantee. Supported in part by the Fondazione A. della
Riccia.
®Permanent address.
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the quantum case) what results from the coupling of a kine-
matical picture of the system with one of the evolution laws
by which the motion of its observables may be ruled. There-
fore, the above mentioned task amounts to looking for a gen-
eral way of quantizing those dynamical systems whose kine-
matical part may be quantized by the Segal procedure. This
quantization procedure of dynamical systems, in which the
Segal quantization of the kinematical picture is still used,
can be called Segal quantization as well, in a natural way. Of
course, a further generalization could be taken up in which
one not only adds dynamics to kinematics, but also general-
izes kinematics itself, allowing the phase space to be a gener-
al differentiable symplectic manifold; naturally, the Segal
quantization of kinematical pictures should first be properly
generalized in order to cope with this situation.

In the present paper we are tackling the problem of
Segal quantization of dynamical systems, even if in a reduced
form, as we will impose limitations to the systems we consid-
er. In fact, we will examine here just those classical systems
whose (linear) phase spaces are finite-dimensional and
whose evolution laws are linear. We believe the thorough
analysis of the simple situation we are carrying on here is
likely to be suggestive of what a solution to more general
problems may look like (as it is often the case), and therefore
we hope it will be helpful in the broader analysis we intend to
develop in future work. The next (but hopefully not the last)
step, which we leave to a forthcoming paper, will be quite
naturally to consider systems whose phase spaces are infi-
nite-dimensional Hilbert spaces (namely, field theory
models).

As we said before, we are dealing with the Segal quanti-
zation of classical dynamical systems in the present paper,
considering however just the systems which are linear in
both their (finite) phase spaces and their evolution laws. In-
deed, this is a sensible choice of a starting point toward more
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general analyses, since in a lot of infinite systems linearity
ensures the existence and even the uniqueness of the physical
vacuum.* We will find out what quantum dynamical systems
arise—through the Segal quantization—f{rom the classical
systems we are considering, how they can be classified, and
how they and their classification must be interpreted.

In view of the thorough treatment of the problem of
quantization we want to give here for the linear and finite
case, we will also investigate what second quantization
amounts to for the systems we are dealing with. We will
clarify how it is a very special quantization procedure, which
can be performed in a limited number of cases only.

Finally, we warn the reader that in order to avoid un-
necessarily cumbersome notation we will explicitly deal with
and write formulas for the one degree of freedom case only
(two-dimensional phase space); the results we will get in this
way can easily be generalized to the general finite-dimen-
sional case, for which they remain true, except for a result on
the positivity of the energy spectrum, as will be specified
below.

2. SEGAL QUANTIZATION

A nondegenerate real skew-symmetric form B on a real
vector space .# is called a symplectic form, and the pair
(.# ,B) is called a symplectic space. A linear automorphism
of .# which preserves the form Bis called a symplectic trans-
formation of (_#,B) and the group of such transformations
will be denoted by Aut (_#,B ). These are the basic ingredi-
ents occurring in the kinematical pictures of a number of
classical systems, once we interpret .# as the phase space of
the system, refer B to the occurrence of phase variables in
canonically conjugate pairs, and represent the symmetries of
the system by elements of Aut(_#,B ). Notice that more gen-
eral symmetries could be represented by autodiffeomor-
phisms of .# which preserve B. However, we are confining
our analysis to linear symmetries since the motions we are
studying in the present paper are linear, for the reasons
touched upon in the introduction. The adjective linear,
which should accompany so many words throughout the
paper, will be dropped when no confusion may arise; some-
times, however, it will be written in parentheses just to keep
the reader aware of the scope of our analysis. Also, as ex-
plained in the Introduction, throughout this paper we are
dealing explicitly with 1-dimensional linear classical systems
only, namely systems whose phase space is R + R. There-
fore, from now on.# = R + R. Asfar as the linear structure
of .# is concerned, there is just one symplectic form on .#;
in fact, two symplectic forms B, and B, are connected by a
linear automorphism 4 of .#, namely AcAut .# exists such
that B,(m,m’) = B{Am,Am"),¥Ym,m'c.#. We recall also
that, whatever the form B is, Aut (_# B) is isomorphic to
SL(2,R).

If now % (%7} is the group of unitary operators of a
separable Hilbert space 7, an 7”-valued Weyl system (WS)
over (.#,B) is defined as a map W: .# — % (F7) such that

(i} W{m )W (m,) = expl(i/2)B (m,,m,)]|W (m, + m,),
Ym, me.#,
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(it) R2t—W (tm)e % (7°) is weakly continuous,
Vme #.

An 77 -valued WS is called irreducible (IWS) if the only
operators in #° which commute with the range of W are the
multiples of the unit operator. The problem of existence and
uniqueness of IWS’s over { #,B ) has been solved in a clear-
cut way since a long time. As to existence, it is proved by
construction: If Q; and P, are the operators defined in L (R)
by (Q./)(x) = xf (x), (P, /) x) = — if'(x), on suitable do-
mains, and if m, m, are two elements of _# such that
B (m,,m,) =1 (it is trivial to show that two such elements
always exist for any B, and that they are a linear basis in ..#),
the map
M Dam, + bmy— exp| — (i/2)ab Jexp[ — iaP,]

X exp{ — ibQ }eZ (L A(R))
is an L *(R)-valued WS over (.#,B). It is an IWS which is
calied the Schrodinger WS over (#,B ) and related to
(my,m,); also, if m|,m, are any two elements of .# such that
B (m,, m;) = 1,theSchrédinger WS over (.#,B ) and related
to (#m),m5) is unitarily equivalent to the system related to
(m,,m,). As for uniqueness, it is settled by a theorem of von
Neumann,® which establishes that any WS over (_#,B)isa
Schrodinger WS within unitary equivalence and
multiplicity.

Since the main goal of this paper is to discuss the quanti-
zation of a classical system as a whole, it is worth recalling
here the sense in which a WS over (.#,B ) quantizes the kine-
matical picture (.#,B ) of a classical system. Let m, and m, be
two elements of .# such that B (m,,m,) = 1; such a “canoni-
cal” pair (m,,m,), determines a connection between WS’s
over (.#,B) and localizable one-dimensional quantum sys-
tems®’; recall that a localizable one-dimensional quantum
system can be defined as a pair (U,Q), where U is a weakly
continuous one-parameter group of unitary operators on a
separable Hilbert space 7%, Qis a self-adjoint operator in %,
and the following relation is satisfied

U@QU(—a)=Q—al,, VaeR.
To show the connection determined by (m,,m,) we first no-

tice that, if Wis an & -valued WS over (.#,B }, then the one-
parameter group U %}’ defined by the relation

USma) = W(am,), VaeR
and the self-adjoint operator Q {7’ defined by the relation
exp( — iaQ ) = W(am,), VaeR
[which simply means that Q {7 is the Stone theorem gener-
ator of the one-parameter group R2a—W (am,)e % (#)]
form a pair (U {7,Q 47”) which is a localizable one-dimen-
sional quantum system (in ). Second and conversely, we

notice that if (U,Q ) is a localizable one-dimensional quan-
tum system (in #°), then

M Bam, 4+ bm,—exp[ — (i/2)ab U (@)exp( — ibQ Y% (7°)

isa WS Wsuch that (U 7,0 7)) = (U,Q). Notice now that
alocalizable one-dimensional quantum system (U,Q ) (in #°)
admits of the following interpretation: /% is the Hilbert
space in which a quantum system is described, Q and the
Stone theorem generator P of U are two observables for the
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system; Q is interpreted as position (along a direction) and P
as momentum (along the same direction), as U is interpreted
as the group of the displacements along the Q direction.
Whether or not all other observables are functions of @ and P
depends upon the particular system under consideration: Es-
sentially, they are not if the system is more than one-dimen-
sional, neither are they if the system has nonclassical obser-
vables such as the spin, but surely they are if (U,Q) is an
irreducible system, namely, if the only operators which com-
mute with Q and the range of U are the multiples of the unit
operator (it is clear that irreducible localizable systems are
connected with IWS’s). Therefore, a WS W over (#,B)
quantizes a classical kinematical picture (.#,B) and this
quantization is determined by a canonical pair (m,,m,),
since W provides both a Hilbert space in which the quantized
system is to be described and two labeled observables,® name-
ly the momentum P ¢}V and the position Q {7, defined re-
spectively by the relations:

exp(— iPy) = W(m.), exp(—iQ§?)= W (m.);

m, and m, can be thought of as those two points of the phase
space in which the classic observables position, resp. mo-
mentum, assume the values 1, resp. 0, and O, resp. 1. Itis
clear that the canonical pair (m,,m,), that labels the opera-
tors to be called momentum and position is not a part of the
quantization procedure, nor is it uniquely defined by the
property B (m,,m,) = 1 [in fact, any pair arising from
(m,,m,) by a symplectic transformation shares this property
and is therefore a canonical pair]. Such a pair is, on the con-
trary, a part of the definition of the classical system itself {in
this connection, notice that B is uniquely defined by a ca-
nonical pair, since if (m,,m,)y and (m,,m,)5. are canonical
pairs then B=B'].

In our discussion of the physical meaning of Segal’s
quantization procedure, we have used the notion of localiza-
ble quantum system. Of course, we could have used the no-
tion of canonical commutation rules as well; as is well
known, though, these are equivalent to the Weyl system “‘ex-
ponentiated” formalism, provided that proper care has been
taken in the definitions and restrictions on such rules; so we
have preferred the more unambiguous formulation in terms
of unitary operators. In what follows we will fix a canonical
pair, which we will still write simply as (#2,,m,) 5, setting
m, = (1,0), m, = (0,1), whence B results into

B ((alﬂl)’(aZ’BZ)) =af;, —apf, Y(a.,8:)(anBred .

Having fixed (m,,m,) in this way, we will drop m,,m, and B
wherever they occur, and B will always mean the above writ-
ten symplectic form. So, we will write simply P, and @,
and we will speak of WS’s over .# and of the Schrédinger
WS over .# . Notice, by the way, that the Schrodinger WS
over .# leads to a quantum description in the Hilbert space
L *(R) such that the momentum and position observables are
represented by P, and Q, respectively; besides, from elemen-
tary properties of the Schrodinger WS, it is easily inferred
that an IWS is always an injective map .# — % (#°).

In what follows we will consider just the WS’s over .#
which are irreducible; in fact, as we mentioned before, the
Weyl algebras defined by the WS’s over .# are all isomor-
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phic, and the multiplicity allowed by the von Neumann
uniqueness theorem essentially leaves room for the represen-
tation (which is not already included in the WS over .#') of
more than one-dimensional systems and of observables with-
out a classical provenance (such as the spin). And in the
present paper we are not interested in any of these possibili-
ties, since we look mainly at the quantization of the motions
characterizing one-dimensional classical systems. Itis worth
noticing explicitly, however, that the multiplicity allowed by
the von Neumann theorem does not admit of the following
interpretation: The algebra generated by a reducible WS is
an algebra of observables with superselection rules; for (in
this one-dimensional case) either the algebra generated by a
WS is irreducible or it has a non-Abelian commutant.®*°

Our sticking to a fixed canonical pair (within a unique
phase space) means that we are going to consider classical
systems whose kinematical structures are the same and are
represented in the same way. The Segal quantization of the
kinematical structure of these systems gives a quantum kine-
matical picture which is unique up to unitary equivalence, as
we are considering irreducible WS’s only; thus, we obtain an
algebra of observables which is unique up to unitary equiv-
alence, and a unique labeling of the kinematical observables
momentum and position. In fact, in quantizing all the classi-
cal motions which can appear in a one-dimensional classical
system, it is good to keep the kinematical picture fixed, in
order to compare the various possible motions in the most
straightforward way. Obviously, this restricting ourselves to
a fixed canonical pair is not an essential limitation, and the
results we get are true for any one-dimensional classical sys-
tem, as it could be shown, for instance, by replacing the ca-
nonical pair we have chosen by another arbitrary one, step
by step in all what follows. Finally, notice that any linear
basis in .# can be made into a canonical pair, by choosing a
suitable symplectic form.

3. QUANTIZATION OF CLASSICAL DYNAMICS

As we have already mentioned, a (linear) symmetry of a
kinematical picture (.#,B ) is represented by a symplectic
transformation of (_#,B ). For a quantum kinematical pic-
ture set up by means of a #”-valued WS, a quantum symme-
try is represented by an automorphism of the Weyl algebra;
in the particular case we are discussing here (one-dimension-
al case), it can be shown that a quantum symmetry can be
represented by a unitary operator in & in the following
sense: If any two observables, represented by two operators
A, and 4, in #°, are connected by a given symmetry, then
A, = UA,U " where U'is a unitary operator on 5%, which, by
definition, represents the symmetry; moreover U is unique
up to a phase factor.” Consider a classical kinematical pic-
ture (#,B), its quantization constructed by means of an #°-
valued WS Wover.#, a classical symmetry represented by a
symplectic transformation S and a quantum symmetry re-
presented by a unitary operator U on 5. We notice that
WoS'is a WS by the very fact that § is symplectic; therefore
the classical symmetry .S transforms the labeled observable
momentum and position, Py, and Q,,, into the operators
Py.sand Q. respectively, since it turns the labeling pairs
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(1,0) and (0,1) into S(1,0) and S(0,1), respectively. On the
other hand, the quantum symmetry U transforms Py, and
Q,, into UP,U'and UQ, U, respectively. Moreover, it
follows that P, ¢ and Q. coincide with UP, U ™" and

UQ, U, respectively, if and only if the following condition
holds,

W(S(m)) = UWmU" VYmed.

Therefore, we will call U the quantization of § when such a
condition holds. For it follows from the previous discussion
that, when this condition holds, U represents S in the quan-
tum kinematical picture which quantizes (.#,B). In other
words, U being the quantization of S means by definition
that the pair (U,S') is compatible with the given labeling. This
in turn is equivalent to the fact that U and S represent the
same symmetry (U in the quantum picture and Sin the clas-
sical one). In fact, under such a hypothesis, P, (for in-
stance) is the momentum observable if we label the observa-
bles ““after” the action of the symmetry, while UP,, U "'is the
momentum observable if we label ‘“before” the symmetry;
since the “time” we decide to label must not matter,

Py..s = UPL U™ must hold true. If, conversely, U and S are
compatible with the labeling, namely, P, = UP, U and
Quwos = UQ,U "' hold true, then labeling after the action of
S amounts to changing the labeled observables with U, and
this means precisely that U and .S represent the same symme-
try. Notice that for any classical symmetry S there is a quan-
tum symmetry which quantizes it; this follows directly from
the von Neumann uniqueness theorem. On the contrary, not
every quantum symmetry is the quantization of some classi-
cal symmetry, as can be easily shown by the construction of
unitary operators U for which no symplectic transformation
S exists such that W (S (m)) = UW (m)U ! holds for all
me # .

The discussion of time evolution and its quantization
can now be made along very similar lines, since we are deal-
ing with classical dynamical systems whose evolution laws
are linear. A (linear) classical motion is represented by a one-
parameter group of symplectic transformations

RSt S, eAut(.#,B),

continuous with respect to the one sensible topology Aut
(.#,B) can be given (in the finite-dimensional case we are
considering). For a quantum system represented by an #"-
valued WS, a motion is represented by a one-parameter
group of automorphisms of the Weyl algebra; in our case, it
can be shown'! that a quantum motion can always be repre-
sented by a weakly continuous one-parameter group of uni-
tary operators

R3t—-U, e ()

in the following sense: if an observable is represented by an
operator 4 in % at time t,, it is represented by U, AU, ' at
time ¢, + ¢ (Heisenberg picture); the one-parameter group
U, is determined within a phase factor which, by the con-
tinuity and the group property, can be nothing else than

e ', acR. We point out that, according to the Stone theorem,
a quantum motion determines, and is determined by, a
unique (up to an additive constant) self-adjoint operator H in
2", which is called the Hamiltonian of the quantum system
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and which satisfies'?
U, = exp(itH),

According to the previous discussion of symmetries, a quan-
tum motion — U, will be called the quantization of a classi-
cal motion t—S, when the following conditions holds

W(S,(m))=UW(@mU, ", VYme.#, VieR.

We are going to show that, while all the classical motions can
be quantized, not every quantum motion is the quantization
of a classical one. In fact, we are going to determine the
Hamiltonians of the quantum dynamical systems which can
be constructed by quantizing the classical ones. First, we
need the following technical result:

Lemma3.1: Let Wil —% (7 )bean IWS over .4, 7
a separable Hilbert space, and y,7,0 any three real numbers.
The operator K ;" = yP 3, + 7Q % + p{ Pu,Qy }. is an
essentially self-adjoint operator in 57",

Proof: Assume W is the Schrodinger WS and check di-
rectly that every Hermite function is an analytic vector for
K O Use Nelson’s analytic vector theorem (Theorem
X.39 of Ref. 13) to get to essential self-adjointness of K ;7).
The result is valid for any WS, as essential self-adjointness is
conserved by unitary transformations.

YteR.

From now on we will denote by H {:7"): = K ;" the
self-adjoint closure of K (™ (the bar denotes closure here
and in the sequel). We can now prove the basic facts abo